Factoring Polynomials

Some trinomials that can be factored do not look like the special trinomials from the previous sections. Factor trinomials, written $ax^2 + bx + c$, by doing the following rules:

- 1. Factor out the GCF of all three terms. Use the resulting trinomial for the rest of the steps. If *a* is negative, also factor out –1 along with the GCF.
- 2. Check that the square root of $b^2 = 4ac$ is a whole number (that is $b^2 4ac$ is a perfect square). If $b^2 = 4ac$ is negative, then we cannot factor the trinomial. If the square root of $b^2 4ac$ is not a whole number, then the factored form of $ax^2 + bx + c$ will have fractions or square root signs in it. We will not be factoring these in this section.
- 3. Look at the sign of the constant term.
 - a. If the second sign (the one before the constant term) is a + sign, then both signs in the factored form are whatever the first sign is. $ax^2 + bx + c = (- + -)(- + -)$

$$tx + bx + c = (__ + __)(__ + __)$$

- $ax^2 bx + c = (_)(_)$
- b. If the second sign is a = sign, then the signs in the factored form are different. $ax^2 + bx - c = (_+_)(_=_)$ or
 - $ax^2 + bx c = (+) (=)$
- 4. Find two numbers that multiply together to give ac but add up to give b. Keep the signs of a, b, and c with the numbers.
- 5. Rewrite in preliminary factored form:
 - a. Write the GCF on the outside of the factored form.
 - b. In both sets of the parentheses, write *ax*
 - c. Write the appropriate signs from step 3.
 - d. Write the two numbers found in step 4, one in each set of parentheses.
- 6. Factor out any GCFs from the sets of parentheses and throw them away.
- 7. Rewrite. This is the final factored form.

Examples:

1. Factor $x^2 + 5x + 6$.

Step 1: Find $GCF(x^2, 5x, 6)$. The GCF of this trinomial is 1 since the only factor of 1 is 1.

Step 2: Find $b^2 - 4ac$. Here, a = 1, b = 5, and c = 6, so $b^2 - 4ac = (5)^2 - (4)(1)(6) = 25 - 24 = 1$. Since $\sqrt{1} = 1$, a whole number, then we can factor this trinomial and have integer coefficients.

Step 3: Sign of the constant term. The constant term of this trinomial is +6, so both the signs inside the factored form (a.k.a. the answer) will be the same. Since the sign on the 5*x* is positive also, the factored form will look like $(_+_)(_+_)$.

Step 4: Find 2 numbers. We need two numbers that multiply together to give (1)(6) = 6 and add up together to give 5. Factors of 6 are 1 & 6 or 2 & 3. Since 2 + 3 = 5, these are the numbers we will use.

Step 5: Preliminary answer. The preliminary factored form is 1(1x + 2)(1x + 3). Step 6: Internal GCFs. There are no GCFs other than 1 inside each set of parentheses.

Step 7: Rewrite. The factored form is (x + 2)(x + 3)

2. Factor the polynomial $x^2 - 5x - 24$. Step 1: GCF(x^2 , -5x, -24) = 1. Step 2: $b^2 - 4ac = (-5)^2 - 4(1)(-24) = 25 + 96 = 121$. $\sqrt{121} = 11$, so we can factor this polynomial. Step 3: The sign of the constant term is negative, so the signs inside the sets of

Step 3: The sign of the constant term is negative, so the signs inside the sets of parentheses will be different, $(_+_)(_-_)$

Step 4: We want 2 numbers that multiply together to give (1)(-24) = -24 and add up to -5. Factors of -24 and their sums are

1^{st}	2^{nd}	Product	Sum		1^{st}	2^{nd}	Product	Sum
-1	24	-24	23		1	-24	-24	-23
-2	12	-24	10		2	-12	-24	-10
-3	8	-24	5	\rightarrow	3	-8	-24	-5
-4	6	-24	2		4	-6	-24	-2

The numbers 3 and -8 multiply together to give -24 and add up to -5.

Step 5: The preliminary answer is 1(1x+3)(1x-8).

Step 6: Neither set of parentheses have a GCF other than 1.

Step 7: The answer is (x + 3)(x - 8).

3. Factor $x^2 + 10x + 18$.

Step 1: $GCF(x^2, 10x, 18) = 1$.

Step 2: $b^2 - 4ac = (10)^2 - (4)(1)(18) = 100 - 72 = 28$. Since 28 is not a perfect square (the square root of 28 is not a whole number), we cannot factor this trinomial and have only integer coefficients in our answer. This trinomial is in its final factored form.

4. Factor $3x^2 + 5x + 4$. Step 1: Find GCF($3x^2$, 5x, 4). The GCF is 1 since none of the coefficients have a factor in common. Step 2: Find $b^2 - 4ac$. In this trinomial, a = 3, b = 5, and c = 4, so $b^2 - 4ac = (5)^2 - (4)(3)(4) = 25 - 48 = -23$. Since -23 is negative, we cannot factor this polynomial.

$$\begin{array}{c} 1^{1}=4\\ 2^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 2^{2}=4\\ 2^{2}=4\\ 2^{2}=4\\ 3^{2}=4\\ 2^{2}=4\\ 3^{2}=4\\ 2^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=4\\ 3^{2}=6\\ 3^{2}=2\\ 3^{2}=6\\ 3^{2}=2\\ 3^{2}$$

Example 4: Factor $2x^2 + 18x - 20 = 2(x^2 + 9(x - 10)) = 2(x + 10)(x - 4)$ $b^{2}-4ac = (a)^{2}-4(1)(-10) | x^{2}+4x = 10 = (x+10)(x-1)$ a=1 = 81 - (-40) | Find 2 factors of =10 $b=0 = 81 + 40 | that add up to 9 | = 121 - (1)^{2} | 10, -1$ 10,-7 3

Math 1300 Section 4.3

Example 5: Factor
$$6x^2 - 18x + 12 = 6(x^2 - 3x + 2) = 6(x - 2)(x - 1)$$

 $b^2 - 4ac = (-3)^2 - 4(1)(2)$
 $a = 1 = 9 - 8 = 1$
 $b = -3$
 $c = 2$
 $b = -2$
 $c = 2$
 $c = 2$

Example 6: Factor
$$-12x^2 + 24x + 36 = -12(x^2 - 2x - 3) = -12(x - 3)(x + 1)$$

 $b^2 - 4ac = (2)^2 - 4(1)(-3)$
 $a = 4$
 $a = 4$
 $b = -2$
 $c = -3$
 $x^2 - 2x - 3 = (x - 3)(x + 4)$
Find 2 factors of -3
that add up to -2
 $-3,1$

Example 7: Factor
$$6x^{2} + 12x - 15$$

 $b^{2} - 4ac = (3)^{2} - 4(6)(-15)$
 $a = 6 = 169 + 360$
 $b = 13 = 529 = (23)^{2}$
 $c = -15$
Popper #24
 $5C_{s}$
 -90
Find 2 factors of (6)(-15)
that add up to 12
 $6x^{2} + 18x - 5x - 15$
 $6x(x+3) - 5(x+3)$
 $(6x-5)(x+3)$

4

$$|6x^{4} - 1|$$

$$x^{2} = y \qquad |6(x^{2})^{2} - 1|$$

$$= |6y^{2} - 1| = (4y)^{2} - (1)^{2} = (4y - 1)(4y + 1)$$

$$= (4x^{2} - 1)(4x^{2} + 1)$$

$$= ((2x)^{2} - (1)(4x^{2} + 1))$$

$$= (2x - 1)(2x + 1)(4x^{2} + 1)$$

Math 1300 Section 4.3 Example 8: Factor $16x^3 - 25x = \chi (16\chi^2 - 25) = \chi (14\chi^2 - 5)^2$ $q^2 - b^2 = (q - b)(q + b) = \chi (14\chi - 5)(14\chi + 5)$

Example 9: Factor
$$30x^3 - 3x^2 - 9x = 3x (10x^2 - x - 3) = 3x(2x+1)(5x-3)$$

 $ax^2 + bx + c$
 $b^2 - 4ac = (-1)^2 - 4(10)(-3)$
 $a = 10 = 1 + 120 = 121 = (11)^2$
 $b = -4$
 $c = -3$
Example 10: Factor $x^4 + 3x^2 - 4$
 $(x^2)^2 + (x^2 + 4)$
 $= (x^2 - 1)(x + 1)(x^2 + 4)$

Example 11: Factor $-18x^3 + 54x^2 - 8x + 24$

$$= -2 \left(q_{x}^{3} - 27x^{2} + 4x - 12 \right)$$

$$= -2 \left[q_{x}^{2} \left(x - 3 \right) + 4 \left(x - 3 \right) \right]$$

$$= -2 \left(x - 3 \right) \left(q_{x}^{2} + 4 \right)$$

5