Test 2 Review

Basic Information
Where: CASA Testing Center (222 Garrison Gym)
Time: 50 minutes
Number of questions: 13
12 Multiple Choice Questions (total of 90 points)
1 Free Response Questions (total of 10 points)
For the free response part, please show your work neatly. Do not skip steps.
Do not forget to reserve a seat for Test - 2 .
Do not forget to go to CASA for fingerprint/picture process before your test date.
Remember the make-up policy: NO MAKE UPS!

$$
\begin{aligned}
& \text { 1. } 4 x-9 \geq 9 x+6 \\
& -9 x \quad-9 x \\
& -5 x-9 \geq 6 \\
& +9+9 \\
& \begin{array}{l}
\frac{-5 x \geq 1 \text { flip }}{-5} \geq \frac{15}{-5}
\end{array} \\
& \text { 2. }{ }^{5}-2 \leq \frac{1}{6}(3 x-6)<4.5 \\
& \begin{array}{l}
-10 \leqslant 3 x-6<20 \\
\left.+6 \begin{array}{l}
+6 \\
+6
\end{array}\right)
\end{array} \\
& \frac{-4}{3} \leqslant \frac{3 x}{3}<\frac{26}{3} \\
& -4 / 3 \leqslant x<26 / 3 \\
& {[-4 / 3,26 / 3} \\
& -\frac{4}{15}=-\left\lvert\, \frac{4}{3}\right. \\
& \frac{26}{13}=8 \frac{2}{3} \\
& 4 \div 3=1 R 1 \\
& 26 \div 3=8 R 2
\end{aligned}
$$

Test 2 Review
$|x-7|=-12$
3. $|x-7|=12 \quad$ No solution

$$
\begin{array}{ll}
x-7=12 & x-7=-12 \\
+7+7 & +7 \\
x=19 & x=-5
\end{array}
$$

4. $|2 x+3|=11$

$$
\begin{array}{rr}
2 x+3=11 & 2 x+3=-11 \\
-3-3 & -3-3 \\
\frac{2 x}{2}=\frac{8}{2} & \frac{2 x}{2}=-\frac{14}{2} \\
x=4 & x=-7
\end{array}
$$

1. $|x|=A \quad A$ is positive

$$
x=A \quad x=-A
$$

2. $|x|=A$ A is negative No solution
3. $|x|=0$
$x=0$

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

5. Find the midpoint of the line segment joining the points $(2,4)$ and $(5,-8)$.

$$
\begin{aligned}
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & \left(\frac{2+5}{2}, \frac{4+(-8)}{2}\right) \\
& (3.5,-2) \quad\left(3 \frac{1}{2},-2\right)
\end{aligned}
$$

Terernexien $d=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$
6. Use the distance formula to find the distance between the two points $(-5,-2)$ ζ and ($-8,-4$).

$$
\begin{aligned}
d & =\sqrt{(-4-(-2))^{2}+(-8-(-5))^{2}} \\
& =\sqrt{(-4+2)^{2}+(-8+5)^{2}}=\sqrt{(-2)^{2}+(-3)^{2}} \\
& =\sqrt{4+9}=\sqrt{13}
\end{aligned}
$$

7. What is the slope of the line through the points $\binom{x_{1}}{(8,-2)}$ and $\begin{array}{cc}x_{2} & y_{2} \\ (-4,-6)\end{array}$

$$
\begin{gathered}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad m=\frac{-6-(-2)}{-4-8}=\frac{-6+2}{-12}=\frac{-4}{-12}=\frac{1}{3} \\
x^{2}+y^{2}=y^{2}
\end{gathered}
$$

8. Given that $\mathrm{x}=4$ and $\mathrm{z}=8$ in the right triangle below, use the Pythagorean Theorem to find the missing side y.

$$
\left.\begin{array}{rl}
4^{2}+y^{2} & =8^{2} \\
16+y^{2} & =64 \\
-16 & -16 \\
\sqrt{y^{2}} & =\sqrt{48} \quad y=\sqrt{48}
\end{array}\right)=\sqrt{16 \cdot 3} 0
$$

$$
a^{2}+b^{2}=c^{2}
$$

9. Given that $\mathrm{x}=6$ and $\mathrm{z}=9$ in the right triangle below, use the Pythagorean Theorem to find the missing side y.

$$
x^{2}+y^{2}=y^{2}
$$

$$
6^{2}+y_{2}^{2}=a^{2}
$$

$$
\begin{array}{r}
36+y^{2}=81 \\
-36
\end{array}
$$

$$
\sqrt{y^{2}}=\sqrt{45}
$$

$$
y=\sqrt{45}=\sqrt{9 \cdot 5}=\sqrt{9} \cdot \sqrt{5}=3 \sqrt{5}
$$

10. State the coordinates of the x and y -intercepts of the following lines:
a. $-4 x-5 y=2$
x-int: set $y=0$

$$
\begin{aligned}
& -4 x=5(0)=2 \\
& \frac{-4 x}{}=\frac{2}{-4} \quad(-1 / 2,0) \\
& +2 y=3
\end{aligned}
$$

b. $5 x+2 y=3$
y-int: set $x=0$

$$
-4(0)-5 y=2
$$

$$
\frac{-5 y}{-5}=\frac{2}{-5}
$$

$$
y=-2 / 5
$$

x-int: set $y=0$

$$
5 x+2(0)=3
$$

$$
y \text {-int. : set } x=0 \quad(0,-2 / 5)
$$

$$
5(0)+2 y=3
$$

$$
\frac{5 x}{5}=\frac{3}{5}
$$

$$
\frac{2 y}{2}=\frac{3}{2}
$$

$$
\begin{array}{|l|}
\hline x=3 / 5 \\
\left(\frac{3}{5}, 0\right)
\end{array}
$$

$$
\begin{gathered}
y=3 / 2 \\
(0,3 / 2)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Distance }\left(\frac{x_{1}}{2},-4\right) \&\left(-3, \frac{y_{1}}{x_{2}}\right) \quad-\frac{3}{1}-\frac{1}{2}=-\frac{3.2}{1 \cdot 2}-\frac{1}{2} \\
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt[(4)]{\left(-3-\frac{1}{2}\right)^{2(3)}+\left(\frac{1}{2}-(-4)\right)^{(1)}} \\
& =\frac{-6-1}{2} \\
& =\frac{-7}{2} \\
& =\sqrt{\left(\frac{-7}{2}\right)^{2}+\left(\frac{9}{2}\right)^{2}} \\
& \frac{1}{2}+\frac{4 \cdot 2}{1 \cdot 2}=\frac{1+8}{2} \\
& =\sqrt{\frac{49}{4}+\frac{81}{4}} \\
& =\sqrt{\frac{130}{4}}=\frac{\sqrt{130}}{\sqrt{4}}=\sqrt{\frac{\sqrt{130}}{2}}
\end{aligned}
$$

