Review for Test 3

- Finding x and y intercepts
- Slope of a line
- Equation of a line: a) slope-intercept b) point-slope c) standard form
- Parallel lines and Perpendicular lines
- Functions; vertical line test and domain

Example 1: Find the slope of the line that passes through the points $(-2,-4)$ and $(6,-7)$.

$$
m=\frac{(x-71}{x_{2}-x_{1}} \quad m=\frac{-7-(-4)}{6-(-2)}=\frac{7+4}{6+2}=\frac{-3}{8}
$$

Example 2: Find the x and y intercepts(if any) of the line

$$
\begin{aligned}
& \begin{array}{l}
\frac{-9 y}{-9}=\frac{6}{-9} \quad y=-\frac{62}{9_{3}} \quad y=-\frac{2}{3} \text { Horizontal } \\
\\
\text { No } x \text {-int. }, y-\text { int }=-\frac{2}{3} \quad\left(0,-\frac{2}{3}\right) \\
\frac{4 x}{4}=\frac{8}{4} \quad x=2 \text { Vertical }
\end{array} \\
& \text { No } y \text {-int, } x \text {-int }=2 \quad(2,0) \\
& 2 x+y=5
\end{aligned}
$$

Example 3: If $f(x)=-2 x^{2}-5 x+1$, evaluate the following:

$$
\begin{aligned}
f(-1) & =-2\left(-(-)^{2}-5(-1)+1\right. \\
& =-2(1)+5+1 \\
& =-2+5+1=4 \\
f(3) & =-2(3)^{2}-5(3)+1 \\
& =-2(9)-5(3)+1 \\
& =-18-15+1=-32
\end{aligned}
$$

Example 4: Determine which of the following sets represents a function.

$\left\{(2,2),(2,5),\left(\frac{2}{5}, 0\right)\right\} \quad$ No

$\left\{(2,2),(5,2),\left(\frac{2}{5}, 0\right)\right\} \quad$ Yes

Example 5: Find the domain of the functions.

$$
f(x)=\frac{13}{x-5} \quad \begin{array}{rl}
x-5 & =0 \\
+5 & x=5 \\
x & -\infty \\
\text { Domain: } & (-\infty, 5)(5, \infty)
\end{array}
$$

$$
\begin{aligned}
& g(x)=\frac{x+3}{x+4} \quad \ll-\infty \\
& \frac{0}{a_{n y y} y+h i n g}=0^{x=-4}
\end{aligned}
$$

$$
\begin{aligned}
& x \leq 3
\end{aligned}
$$

Example 6: State whether the following lines are parallel, perpendicular, or neither.

$$
\begin{aligned}
& \frac{y=3 x-6}{\frac{y}{3 x-y=12}}-3 x=-3 x \\
& \text { parallel } \\
& \frac{-y}{-1}=\frac{-3 x}{-1}+\frac{12}{-1}
\end{aligned} \begin{aligned}
& m_{1}=m_{2} \Rightarrow \text { lines are parallel } \\
& m_{1}=m_{2} \\
& b_{1}=b_{2}
\end{aligned} \Rightarrow \text { same line }
$$

$$
\begin{aligned}
& y=3 x-12 \\
& y-4 x=9 \\
& y+\frac{x}{4}=12
\end{aligned}
$$

$$
m_{1} \cdot m_{2}=-1 \Rightarrow \text { lines are }
$$

perpendicular

$$
\begin{aligned}
& y-4 x=9 \\
& +4 x+4 x \\
& y=4 x+9
\end{aligned}
$$

$$
\begin{aligned}
& y+\frac{x}{4}=12 \\
& -\frac{x}{4}-\frac{x}{4}
\end{aligned}
$$

$$
y=-\frac{1 x}{4}+12
$$

$$
4 y=7 x+10
$$

$$
4\left(-\frac{1}{4}\right)=-1 \quad \text { lines are perm. }
$$

$$
y-6=-\frac{4}{7} x
$$

$$
\frac{4 y}{4}=\frac{7 x}{4}+\frac{10}{4}
$$

$$
\begin{aligned}
& y-6=-\frac{4}{7} x \\
& +6 \\
& +6
\end{aligned}
$$

$$
y=\frac{7}{4} x+\frac{10}{4} \quad y=-\frac{4}{7} x+6
$$

$$
y=\frac{7}{4} x+\frac{5}{2} \quad\left(\begin{array}{l}
\left.\frac{1}{3}\right)\left(-\frac{4}{x}\right)=-1
\end{array}\right) \begin{aligned}
& \text { lines } \\
& \text { are } \\
& \text { pera. }
\end{aligned}
$$

$$
\begin{array}{ll}
m=-7 / 8 & \text { Slope-intercept } \\
y-\text { int }=-\frac{3}{4} & y=m x+b, \quad m=\text { slope } \\
y=-\frac{7}{8} x+\left(-\frac{3}{4}\right) & b=y-\text { int. } \\
y=-\frac{7}{8} x-\frac{3}{4} & \text { Point-slope } \quad \\
& y-y_{1}=m\left(x-x_{1}\right),\left(x_{1}, y_{1}\right)=\text { point }
\end{array}
$$

$8 y=-\frac{7}{8} x^{28}-\frac{3}{4}$
Standard form

$$
\begin{aligned}
& 8 y=-7 x-6 \\
& +7 x+7 x
\end{aligned}
$$

$$
7 x+8 y=-6
$$

Example 9: Write an equation for the line that passes through the point $(-3,4)$ and is 1.4

$$
(-3,4)
$$

$$
m_{1}=-\frac{2}{3} \quad m=\left(-\frac{3}{2}\right)=\frac{3}{2}
$$

$$
y-4=\frac{3}{2}(x-(-3)) \rightarrow y=\frac{3}{2} x+\frac{9}{2}+\frac{4 \cdot 2}{1 \cdot 2}
$$

$$
y-4=\frac{3}{2}(x+3)
$$

$$
y-4=\frac{3}{2} x+\frac{a}{2}+4
$$

$$
\begin{aligned}
& y=\frac{3}{2} x+\frac{9}{2}+\frac{8}{2} \\
& y=\frac{3}{2} x+\frac{17}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Parallel to the line } 2 x+3 y=-6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Perpendicular to the line } 2 x+3 y=-6
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-7}{-\frac{1}{5}-(-1)}=\frac{-9}{-\frac{1}{5}+1}=\frac{-9}{\frac{4}{5}}=-9 \div \frac{4}{5} \\
& =-9 \cdot \frac{5}{4} \\
& -\frac{1}{5}+\frac{1 \cdot 5}{1 \cdot 5}=\frac{-1+5}{5}=\left(\frac{4}{5}\right. \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-7=-\frac{45}{4}(x-(-1))\left\{\begin{array}{l}
y-7=-\frac{45}{4} x-\frac{45}{4} \\
+7
\end{array}\right. \\
& y=-\frac{45}{4} x-\frac{45}{4}+\frac{7.4}{1.4}
\end{aligned}
$$

