Math 1311
Section 3.1
The Geometry of Lines

Approach One: A line is determined by two points

We can use coordinate axes to represent lines in the real world so we can use math to solve problems.

Ladder

Slope of a Line: The slope is defined to be the average rate of change for the function.

$$
\begin{array}{r}
\left(x_{1}, y_{1}\right) \\
f\left(x_{2}, y_{2}\right) \\
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
\end{array}
$$

- For a given line, for whatever two points are selected, the average rate of change between then will be the same.
- Positive when the line rises from left to right.
- Negative when the line falls from left to right.
- Zero when the line is horizontal (no change in y)
- Slope can be used to calculate the change by the formula
vertical change $=m *$ horizontal change
rise $=m \cdot r u n$
Example 1:

Example 2; Find the slope between the pair of points given:
a. $(3,8) \&(-2,14)^{2}$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{-22-(-8)}{-1-3}=\frac{-22+8}{-4}
$$

$$
\begin{aligned}
m=\frac{14-8}{-2-3}=\frac{6}{-5} & =-\frac{6}{5} \\
& =-1.2
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-14}{-4} \\
& =\frac{14}{4}=\frac{7}{2} \\
& =3.5
\end{aligned}
$$

Approach Two - Using slope to define a line.
Example 3: The Circus Tent Problem.
At the center of the circus tent, the height is 22 feet. The slope of the tent roofline is 0.8 .

a. If you walk 8 feet from the center of the tent, how high is the roof?

$$
0.8=\frac{\text { rise }}{\text { run }} \quad 0.8=\frac{\text { rise }}{19.5} \Rightarrow \text { rise }=19.5(0.8)=15.6 \mathrm{ft}
$$

b. The tent is staked with ropes that follow the roofline. How far from the center of the tent are the stakes?

$$
27.5
$$

Example 4: The Ramp Problem.
The standard for a wheelchair ramp is one inch of vertical change for each 12 inches of horizontal change. If you need to build a wheelchair ramp to get from the ground to a porch which is 3 feet high, how far away from the porch does the ramp need to start?

$$
m=\frac{\text { rise }}{\text { run }}=\frac{1}{12}
$$

$$
\frac{1}{12} \geqslant \frac{36}{\text { run }}
$$

$$
\begin{aligned}
\text { run } & =12(36) \\
& =432 \text { inches }
\end{aligned}
$$

Example 5: The Ladder Problem.

The base of a ladder is 4 horizontal feet from the wall. The slope of the line made by the ladder is -1.25 . Find the vertical height of the top of the ladder.

$$
\begin{aligned}
& m=-1.25 \\
& m=\frac{\text { rise }}{\text { run }} \\
& -1.25=\frac{\text { rise }}{4}
\end{aligned}
$$

$$
\text { rise }=-1.25(4)
$$

Approach Three: Lines from Intercepts and Slope

Definition: The horizontal or x -intercept is the x value where a line crosses the x axis.
The vertical or y-intercept is the y value where a line crosses the y-axis.
We can draw a line from both intercepts or from one intercept and a slope.

Example 6: Draw a line with x-intercept of 3 and y-intercept of -2 .

Example 7: Find the point where the line through (1.2,3.1) with slope -0.8 crosses the horizontal axis. $\left(x^{2}, 0^{2}\right)$

$$
\begin{array}{cc}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad-0.8=\frac{0-3.1}{x-1.2} & \underbrace{-0.8}_{Y_{1}}=\frac{-3.1}{\underbrace{x-1.2}_{Y_{1} y_{1}}} \\
& \quad x=5.075 \\
(5.075,0) & \text { window:[4.6]x[-2×1]}
\end{array}
$$

Example 8: Find the point where the line through $\begin{gathered}\left.x_{1}, 4,3\right) \\ (-4,3)\end{gathered}$ with slope 3 crosses the vertical axis.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
3 & =\frac{y-3}{0-(-4)} \\
4 \cdot 3 & =\frac{y-3}{4} \cdot 4
\end{aligned}
$$

$$
\left(x^{x_{2}}, y^{y_{2}}\right)
$$

$$
\begin{aligned}
& 12=y-3 \\
& +3
\end{aligned}
$$

$$
y=15
$$

$$
(0,15)
$$

Example 9: Find the point with horizontal coordinate 6.6 that lies on the line through $(1,5)$ with slope -1.1 .

$$
\begin{aligned}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \underbrace{-1.1}_{Y_{1}}=\frac{y-5}{\underbrace{6.6-1}_{Y_{2}}} \\
5.6-1.1 & =\frac{y-5}{5.6} 5.6
\end{aligned}
$$

