Math 1311
Section 3.2
Linear Functions

A linear function is a function which has a constant rate of change, i.e. slope.
The slope is the amount of change in the function value when the independent variable increases by 1 .
Suppose $y=f(x)$ is a function of x. Then:

$$
\text { slope } m=\frac{\text { change in } y}{\text { change in } x}=\frac{\text { change in function }}{\text { change in variable }}
$$

Equations

Slope - Intercept Form

- A linear function has formula $y=f(x)=m x+b$.
- m is the slope of the line.
- The point $(0, b)$ is the vertical (y) intercept.
- In practical terms, b represents the initial value of the output.

Point - Slope Form

- Suppose we know that a linear function has slope m and passes through the point $\left(x_{1}, y_{1}\right)$, then the equation of the line can be written as $y-y_{1}=m\left(x-x_{1}\right)$.
- From this equation, solving for y gives the equation of the linear function.

Example 1: Give the formula for the linear function described:
a. slope of 7 and y-intercept $(0,-2)$.
b. slope of -4 and passes through the point $(2,-3)$.
c. passes through the points $(0,4)$ and $(2,-6)$.
d. passes through the points $(-3,5)$ and $(7,24)$.

Example 2: Suppose that at the beginning of an experiment there are 500 bacteria present and that this number is decreasing at a rate of 75 bacteria per hour.
a. How can we tell that this relationship is linear?
b. Give a formula for N , the number of bacteria after h hours.

Example 3: A certain company manufactures widgets. Suppose that the cost of leasing the building, buying the equipment, but producing no widgets is $\$ 14000$. Suppose the total cost is $\$ 20000$ if 500 widgets are produced.
a. Assuming a linear relationship between total $\operatorname{cost} \mathrm{C}$ and number of widgets produced n, find and interpret the slope of the function $C=f(n)$.
b. Give the formula for the function $C=f(n)$.
c. What is the total cost to when 785 widgets are produced.

Example 4: A certain jeweler makes a profit of $\$ 160$ when she sells 12 necklaces and $\$ 300$ when she sells 17 necklaces.
a. Assuming a linear relationship between profit P and the number of necklaces sold n, find and interpret the slope of the function $P=f(n)$.
b. Give the formula for the function $P=f(n)$.

