A linear function is a function which has a constant rate of change, i.e. slope.

The slope is the amount of change in the function value when the independent variable increases by 1.

Suppose y = f(x) is a function of x. Then:

$$slope m = \frac{change in y}{change in x} = \frac{change in function}{change in variable}$$

Equations

Slope – Intercept Form

- A linear function has formula y = f(x) = mx + b.
- m is the slope of the line.
- The point (0, b) is the vertical (y) intercept.
- In practical terms, b represents the initial value of the output.

Point - Slope Form

- Suppose we know that a linear function has slope m and passes through the point (x_1, y_1) , then the equation of the line can be written as $y y_1 = m(x x_1)$.
- From this equation, solving for y gives the equation of the linear function.

Example 1: Give the formula for the linear function described:

a. slope of 7 and y-intercept (0, -2).

$$m=7$$
 $y=mx+b$
 $b=-2$ $y=7x+(-2)$
 $Y=7x-2$
 $f(x)=7x-2$

b. slope of -4 and passes through the point (2, -3).

$$y-y_1 = m(x-x_1)$$
 $y-(-3) = -4(x-2)$
 $y=-4(x-2)$
 $y=-4x+5$
 $y=-4x+5$
Page Lof4

c. passes through the points
$$(0,4)$$
 and $(2,-6)$.

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$

$$y - y = -5(x - 0)$$

$$y - y = -5x$$

$$y - y = -5x$$

$$y - y = -5x$$

$$y - y = mx + b$$

$$y = -6x + 4$$

d. passes through the points (-3, 5) and (7, 24).

$$m = \frac{24-5}{7-(-3)} = \frac{19}{10} = 1.9$$

$$y - y_i = m(x - x_i)$$

$$y-5=1.9(x-(-3))$$

 $y-5=1.9(x+3)$
 $y-5=1.9x+5.7$
 $y-5=1.9x+5.7$

 $m = \frac{12-11}{2}$

y = -5x +4

Example 2: Suppose that at the beginning of an experiment there are 500 bacteria present and that this number is decreasing at a rate of 75 bacteria per hour.

- a. How can we tell that this relationship is linear?
- b. Give a formula for N, the number of bacteria after h hours.

b)
$$y = mx + b$$
 $m = -75$
 $N(h) = -75h + 600$ $(0,500) b = 500$

Example 3: A certain company manufactures widgets. Suppose that the cost of leasing the building, buying the equipment, but producing no widgets is \$14000. Suppose the total cost is \$20000 if 500 widgets are produced.

- a. Assuming a linear relationship between total cost C and number of widgets produced n, find and interpret the slope of the function C = f(n).
- b. Give the formula for the function C = f(n).
- c. What is the total cost to when 785 widgets are produced.

$$(0, 14000)$$
 $(500, 20000)$ $m = \frac{42-41}{x_2-x_1}$

$$m = \frac{20000 - 14000}{500-0} = \frac{6000}{500} = 12$$

$$C(n) = 12n + 14000$$

$$producing 1 item$$

Example 4: A certain jeweler makes a profit of \$160 when she sells 12 necklaces and \$300 when she sells 17 necklaces.

- a. Assuming a linear relationship between profit P and the number of necklaces sold n, find and interpret the slope of the function P = f(n).
- b. Give the formula for the function P = f(n).

$$(12', 160)$$
 $(17, 300)$

$$m = \frac{300 - 160}{17 - 12} = \frac{140}{5} = 28$$

$$4-41=m(x-x)$$

$$y = 28x - 176$$
 $P(n) = 28n - 176$