Math 1311
Section 3.2
Linear Functions

A linear function is a function which has a constant rate of change, i.e. slope.

The slope is the amount of change in the function value when the independent variable increases
by 1.

Suppose y = f(x) is a function of x. Then:

change iny change in function
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Equations

Slope — Intercept Form
e Alinear function has formulaly = f(x) = mx +b.
e mis the slope of the line.
e The point (0, b) is the vertical (y) intercept:
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I practical terms, Bfgpresents hesnitial valuEionthe outputy

Point — Slope Form
e Suppose we know that a linear function has slope m and passes through the point
(x1,y1), then the equation of the line can be written asfy — y; = m(x — x;).|
e From this equation, solving for y gives the equation of the linear function.

Example 1: Give the formula for the linear function described:
a. slope of 7 and y—intercept (0, —2).
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b. slope of —4 and passes through the point (2, -3).
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Cc. passes through the points (0,4) and (2, —6). X2— X
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d. passes through the points (—3,5) and (7, 24).
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Example 2: Suppose that at the'beginning of an experiment there are 500 bacteria present and
that this number is decreasing at a rate of 75 bacteria per hour.

a. How can we tell that this relationship is linear?
b. Give a formula for N, the number of bacteria after h hours.
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VR = —15h £ 500 (0,500 b =300
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Example 3: A certain company manufactures widgets. Suppose that the cost of leasing the
building, buying the equipment, but producing no widgets is $14000. Suppose the total cost is
$20000 if 500 widgets are produced.
a. Assuming a linear relationship between total cost C and number of widgets produced n,
find and interpret the slope of the function C = f(n).
b. Give the formula for the function C = f(n).
c. What is the total cost to when 785 widgets are produced.
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c(DY = (72) +\UooD =422 000
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Example 4: A certain jeweler makes a profit of $160 when she sells 12 necklaces and $300
when she sells 17 necklaces.
a. Assuming a linear relationship between profit P and the number of necklaces sold n, find
and interpret the slope of the function P = f(n).
b. Give the formula for the function P = f(n).
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