A function that grows or decays by a constant percentage change over each fixed change in input is called an exponential function.

Exponents - A quick review
$n \leftarrow$ exponent
base
6. $\frac{a^{m}}{a^{n}}=a^{m-n}, a \neq 0 \quad \frac{5^{2}}{5^{3}}=5^{2-3}=5^{-1}$
7. $\left(a^{m}\right)^{n}=a^{m n}\left(5^{2}\right)^{3}=5^{6}$ $=\frac{1}{5}$
8. $(a b)^{n}=a^{n} b^{n}(3 \cdot 5)^{2}=3^{2} \cdot 5^{2}$
9. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}, b \neq 0 \quad\left(\frac{3}{5}\right)^{2}=\frac{3^{2}}{5^{2}}$
10. For $b \neq 1, b^{x} \leftrightarrows \vec{b}^{y}$ means $x=y$.

Example 1: Simplify. Write your final answer without negative exponents.

$$
3^{2}=3^{x} \quad x=2
$$

1. $\left(\left(a^{2}\right)^{3}\right)^{4}$
$=a^{2 \cdot 3 \cdot 4}=a^{24}$
2. $a^{3} b^{2} a^{4} b^{-1}$

$$
\text { 2. } \begin{aligned}
a^{3} b^{2} b^{3} & =a^{3-2} b^{2-3} \\
& =a b^{-1}=\frac{a}{b}
\end{aligned}
$$

$$
=a^{2} b^{-1}=\frac{a^{2}}{b}
$$

Exponential Growth

Example 2: A peri dish contains 500 bacteria at the start of an experiment. The number of bacteria double each hour. We can calculate the number of bacteria in the dish as a function of the number of hours since the experiment started. Here is the beginning of the chart:

Time, in hours	0	1	2	3	4	5
Number of bacteria	500	1000	2000	4000	8000	16000

Let $N=N(t)$ be the number of bacteria in the dish t hours after the experiment started.

Let's use the pattern in the chart above to develop a formula for $N(t)$.

$$
\begin{array}{lc}
N(0)=500 & \\
N(1)=2 \cdot 500 & N(t)=500 \cdot 2^{t} \\
N(2)=2(2 \cdot 500)=2^{2} \cdot 500 & \uparrow \\
N(3)=2\left(2^{2} \cdot 500\right)=2^{3} \cdot 500 & \text { Initial Growth } \\
\text { The growth factor is: } 2 &
\end{array}
$$

The Exponential Growth Formula: $N(t)=P a^{t}, \underline{a>1}$.
P is the initial value, t is the time and a is the growth factor for each unit of time.

Exponential Decay
Example 3: Suppose we change the experiment in Example 2 by introducing an antibiotic into the petri dish. Now, the number of bacteria in the dish is cut in half each hour.

Time, in hours	0	1	2	3	4	5
Number of bacteria	500	250	125	62.5	31.25	15.625

Let $N(t)$ be the number of bacteria in the petri dish t hours after the antibiotic was introduced. The pattern in the above chart suggests the following formula for $N(t)$:

$$
\begin{array}{ll}
N(0)=500 & N(2)=\frac{1}{2}\left(\frac{1}{2} \cdot 500\right)=\left(\frac{1}{2}\right)^{2} \cdot 500 \\
N(1)=\frac{1}{2}(500) & N(t)=\left(\frac{1}{2}\right)^{t} \cdot 500 \\
\text { The cecay factor is: } \frac{1}{2} & N(t)=500\left(\frac{1}{2}\right)^{t}
\end{array}
$$

The Exponential Decay Formula: $N(t)=P a^{t}, \underline{a<1}$.

Example 4: Radioactive Decay
If there is 1 gram of heavy hydrogen in a container, then as a result of radioactive decay there will be .783 grams of heavy hydrogen in the container one year later. Suppose a container starts with 25 grams of hydrogen.
a. Find the formula for the number of grams of hydrogen in the container as a function of the time t in years.
b. How much heavy hydrogen is left after 5 years?
c. Plot the graph of the function.
d. Find the time t when $1 / 2$ of the hydrogen is left in the container.

$$
\text { (a) Decay factor }=.783
$$

$$
A(t)=25 \cdot(.783)^{t}
$$

$$
\begin{aligned}
& t=2.83 \\
& \text { after } 2.83 \text { years }
\end{aligned}
$$

Constant Proportional Change
A function is exponential if it shows constant percentage (or proportional) growth or decay. Growth: For an exponential function with discrete (yearly, monthly, etc.) percentage growth rate r as a decimal, the growth factor $\boldsymbol{a}=\mathbf{1}+\boldsymbol{r}$.
Decay: For an exponential function with discrete (yearly, monthly, etc.) percentage decay rate r as a decimal, the decay factor $\boldsymbol{a}=\mathbf{1}-\boldsymbol{r}$.

Example 5: A certain phenomenon has an initial value of 23 and grows at a rate of 6% per year. Give an exponential function which describes this phenomenon.

$$
\begin{array}{ll}
N(t)=P a^{t} & 6 \% \rightarrow 0.06 \\
N(t)=23(1.06)^{t} & r=0.06 \\
N(5)=23(1.06)^{5}=30.78 & =1+0.06=1.06
\end{array}
$$

Example 6: Suppose the amount of pollution in a tank starts at 100 pounds and decreases by 16% per hour. Find the decay constant and the formula for the amount of pollutant in the tank in pounds as a function of time in hours. How much is left in the tank after 10 hours? 15 hours?

$$
\begin{aligned}
& N(t)=1 D_{a}^{t} \quad 16 \% \rightarrow .16 \\
& N(t)=100 \cdot a^{t} \\
& N(t)=100(.84)^{t} \\
& N(10)=100(.84)^{10}=17.49 \text { pounds } \\
& N(15)=100(.84)^{15}=7.31 \text { pounds }
\end{aligned}
$$

Growth or Decay Factor Unit Conversion
If the growth or decay factor for one period of time is a, then the growth or decay factor for k periods of time is given by $A=a^{k}$.

Here is the conversion diagram:

GROWTH FACTOR
FOR k
PERIODS OF TIME

What does this mean in practical terms?
Example 7: Census data is collected every 10 years. Suppose the census data shows that the population increases by 23% per decade. What is the yearly growth factor?

$$
\begin{aligned}
& \% \text { inc.233 } \rightarrow \text { grow ti } 23 \text { factor for } 10 \text { years } \rightarrow \\
& \text { for 10 years } \rightarrow\left(1.23110=1.02 \begin{array}{l}
1.02-1=.02 \rightarrow 2 \% \\
\rightarrow \text { growth factor for } 1 \text { year } \rightarrow \% \text { increase } \\
\text { for lyear. } \\
1.02
\end{array}\right.
\end{aligned}
$$

Example 8: Terry deposits $\$ 10,000$ in an account with a 0.75% monthly interest rate. What is the yearly growth factor?

$$
\begin{aligned}
& .75 \% \rightarrow .0075=r \\
& a=1+r=1+.0075=1.0075 \text { monthly growth } \\
& (1.0075)^{12}=1.094 \text { yearly growth factor }
\end{aligned}
$$

Find the amount in the account after 10 years.

$$
\begin{aligned}
& N(t)=10000(1.094)^{t} \\
& N(10)=10000(1.094)^{10}=\$ 24,556.88
\end{aligned}
$$

