We continue to work with exponential functions having formula $f(x) = Pa^x$, where P is the initial amount of output and a is the growth or decay factor.

- For an exponential function with discrete (yearly, monthly, etc.) percentage growth rate r as a decimal, the growth factor is a = 1 + r.
- For an exponential function with discrete percentage decay rate r as a decimal, the decay factor is a = 1 r.
- The percentage growth/decay factor is NOT the same as the growth/decay factor!

Example 1: A Savings Account

You initially invest \$500 in a savings account that pays a yearly interest rate of 4%.

- a. Write a formula for an exponential function giving the balance in your account as a function of time since your initial investment.
- b. What monthly interest rate best represents this account? Round your answer to three decimal places.
- c. Calculate the decade growth factor.
- d. Use the formula you found in part a to determine how long it will take for the account to reach \$740.

Example 2: At age 25 you start to work for a company and are offered two rather fanciful retirement options.

Option 1: When you retire, you will be paid a lump sum of \$25000 for each year of service. **Option 2:** When you start to work, the company will deposit \$10000 into an account that pays 1% per month. When you retire, the account will be closed and the balance given to you.

- a. Which retirement option is more favorable to you if you retire at age 65?
- b. Which retirement option is more favorable if you retire at age 55?

Example 3: The half-life of a certain radioactive substance is 14.5 hours.

- a. Find the hourly decay factor for this substance.
- b. What is the constant percentage change for this substance?