Math 1311
Section 4.5
Logarithmic Functions

In the last couple of sections, we looked at exponential functions. With an exponential function like $N(t)=2^{t}$, a small increase in t results in a large increase in $N(t)$.

In this section, we will look at logarithms. One of the characteristics of a logarithmic function is that a large increase in the independent variable results in a fairly small increase in the function value.

We will first consider these functions by looking at a familiar example.
Example 1: The Richter scale
The magnitude of earthquakes is measured on the Richter scale, a scale created by Charles Richter in 1935.

Moderate quake - 5.3
Strong quake - 6.3
Strongest quake recorded - 8.9
The rule is that an increase in 1 point on the Richter scale indicates a quake that is 10 times more powerful.
a) Comparing a 5.3 and a 6.3 -

$$
6.3-5.3=1
$$

6.3 is 10 times more powerful than 5.3.
b) The 1811 quake in New Madrid, Missouri with a magnitude of 8.8.

San Francisco 1989 - a quake of magnitude 7.1
How much more powerful was the New Madrid quake than the San Francisco quake?

$$
8.8-7.1=1.7
$$

$$
10^{1.7}=50 \quad 50 \text { times more powerful }
$$

c) If an earthquake 100 times more powerful than the San Francisco quake occurred, what would its Richter scale measurement be?

$$
10^{2}=100
$$

$$
7.1+2=9.1
$$

d) In 2004 a quake which was 80 times more powerful than the San Francisco quake happened in Indonesia. What was the Richter scale measurement for the 2004 quake?

$$
\begin{aligned}
& \frac{10}{Y_{1}}=\underbrace{80}_{r_{2}} \quad 7.1+1.9=9.0 \\
& t=1.9
\end{aligned}
$$

The Common Logarithm

Notice that the solution to the last part of Example 1 asks us to solve the equation $10^{x}=80$ for x . We can use the crossing graph method to solve this on our calculator. However, if we need to solve many equations like this one, we might want a more efficient way of doing so. This efficient solution is accomplished by the common logarithm.
Definition of the common logarithm: $y=\log x$ is equivalent to the equation $10^{y}=x$.
The graphing calculator has a key to calculate $\log x$, so the solution to the equation $10^{x}=80$ is the number $x=\log 80$ which we can find with a few keystrokes.

Example 2:

$$
\begin{gathered}
\log 1=0 \text { because } 10^{0}=1 \\
\log 10=1 \text { because } 10^{1}=10 \\
\log 100=2 \text { because } 10^{2}=100 \\
\log 1000=3 \text { because } 10^{3}=1000 \\
\log 0.01=-2 \text { because } 10^{-2}=0.01 \\
\log 5=0.7 \text { because } 10^{0.7}=5 \text { (Check this using your calculator) }
\end{gathered}
$$

The graph of the common logarithm

Basic Facts for the Common Logarithm

1. $\log x$ is the power of 10 that gives x.
2. If you multiply a number by 10^{t}, you increase it's logarithm by t units.
3. The function $f(x)=\log x$ increases slowly and is concave down. This means it increases at a decreasing rate as x gets bigger.

The logarithm is the inverse of the exponential function.

Example 3:
a) $\log 1,000,000=6$

$$
\begin{aligned}
& 10^{t}=1,000,000 \\
& 10^{6}=1000000
\end{aligned}
$$

$$
\text { b) } \log 10^{3.4}=3.4
$$

$$
10^{t}=10^{3.4}
$$

c) $10^{t}=60$

$$
\log 60
$$

$$
\begin{aligned}
& t=1.78 \\
& \text { d) } \log (2 x+5)=1.2 \\
& 10^{1.2}=2 x+5 \\
& -5 \quad-5 \\
& \frac{10^{1.2}-5}{2}=\frac{2 x}{2} \\
& x=\frac{10^{1.2}-5}{2} \quad x=5.42
\end{aligned}
$$

$$
\begin{gathered}
\text { e) } \begin{array}{c}
3.2 \log (3 x+8)-2=3.76 \\
+2+2
\end{array} \\
\frac{3.2 \log (3 x+8)}{3.2}=\frac{5.76}{3.2} \\
\log (3 x+8)=1.8
\end{gathered} \quad \begin{aligned}
& \text { Page } 3 \text { of } 5
\end{aligned} \quad \begin{aligned}
& 10^{1.8}=3 x+8 \\
& -8 \\
& \frac{10^{1.8}-8}{3}=\frac{3 x}{3} \\
& x=\frac{10^{1.8}-8}{3} \\
& x=18.37
\end{aligned}
$$

Example 4: Zoologists have studied the daily rate of gain in weight G as a function of daily milk- energy intake M during the first month of life in several hoofed mammal species. The model is

$$
G=0.067+0.052 \log M
$$

a) Draw a graph if G versus M including values of M up to .4 units.

$$
\begin{aligned}
& x_{\min }=0 \\
& x_{\max }=.4
\end{aligned}
$$

b) If the daily milk-energy intake M is 0.3 units, what is the daily rate of gain in weight?

$G(0.3)=0.067+0.052 \log 0.3$
 $=.04$

c) A zookeeper wants to bottle-feed an elk calf so as to maintain a daily rate of gain in weight G of 0.03 units. What must the daily milk-energy intake be?

d) What does the shape of the graph say about the efficiency of higher levels of milk-energy intake?

The Natural Logarithm
Definition of the natural logarithm: $y=\ln x$ is equivalent to the equation $e^{y}=x$.
Example 5:

$$
\begin{gathered}
\ln 1=0 \text { because } e^{0}=1 \\
\ln e=1 \text { because } e^{1}=e \\
\ln e^{2}=2 \text { because } 2 \text { is the power of e that gives } e^{2} \\
\ln e^{t}=t \text { because } t \text { is the power of } e \text { that gives } e^{t}
\end{gathered}
$$

Example 6: Solve for $\mathrm{x}: \ln (2 x+5)=1.2$

$$
\begin{aligned}
& e^{1.2}=2 x+5 \\
& -5 \\
& \frac{e^{1.2}-5}{2}=\frac{2 x}{2} \quad x=\frac{\left(e^{1.2}-5\right)}{2} \approx-.84
\end{aligned}
$$

Example 7: Age of Haddock
The age T, in years, of a haddock can be thought of as a function of its length L, in centimeters. One common model uses the natural logarithm: $T=19-5 \ln (53-L)$

a) Draw a graph of age versus length. Include lengths between 25 and 50 centimeters.
b) Express using functional notation the age of a haddock that is 35 centimeters long, and then calculate that value.

$$
T(35)=4.55
$$

c) Low long is a haddock that is 10 years old?

$$
\underbrace{\frac{19-5 \ln (53-L)}{\text { Page } 5 \mathrm{~S}_{2} 5}}_{Y_{1}}=10 \quad L=46.95 \mathrm{~cm}
$$

