Recall, exponential functions of the form $f(x) = Pa^x$ has a fixed base a, and the exponent varies. For a power function this is reversed. There is a fixed exponent, and the base varies.

Power Functions

For a power function $f(x) = cx^k$

- k is called the power and it is the most significant part of a power function.
- The coefficient c is equal to f(1).
- If k is positive, then f is increasing; larger, positive values of k cause f to increase more rapidly.
- If k is negative, then f decreases toward zero; negative values of k that are larger in size cause f to decrease more rapidly.

Graphs of power functions

Example 1: When a rock is dropped from a tall structure, it will fall $D = 16t^2$ feet in t seconds.

a. Make a graph that shows the distance the rock falls versus time if the building is 70 feet tall.

 $[\infty 1, 0] \times [\overline{c}, 0]$

b. How long does it take the rock to strike the ground?

2.09 seconds

Homogeneity Property of Power Functions

What happens to a power function when you double the variable? Triple the variable?

Example 2: The area A of a square with side length s is equal to s^2 . Calculate the area of a square if the lengths of the sides are

a. Doubled.

s ____

h=s2

b. Tripled.

$$(3s)^2 = 9s^2$$

c. Quadrupled

Example 3: The volume V of a cube with side length s is equal to s^3 . Calculate the volume of a cube if the lengths of the sides are

a. Doubled.

$$(3s)^3 = (3)^3 \cdot s^3 = 27s^3$$

c. Quadrupled
$$(4s)^2 = 4^3$$
. $s^3 = 64s^3$

General Rule:

For a power function $f(x) = cx^k$, if x is increased by a factor of t, then f is increased by a factor of $t^{\underline{k}}$.

Example 4: The speed at which certain animals run is a power function of their stride length, and the power is k = 1.7. If one animal has a stride length three times as long as another, how much faster does it run?

$$f(s) = CS^{1,7}$$

Example 5: Let $f(x) = cx^{2.53}$. By what factor must x be increased in order to triple to

$$f_{\text{obs}} = C \times \frac{2.53}{2.53}$$
 $\frac{1}{2.53} \times \frac{2.53}{2.53} = \frac{3}{2} \times \frac{2.53}{2.53} \times \frac{2.$

$$\frac{2(kx)}{x^{2.52}} = 3$$

$$\frac{1}{1200} = \frac{1}{1200} = \frac{1}{1200}$$

Example 6: Let $f(x) = cx^{1.47}$. If x is doubled in value, by what factor would f be increased?

$$2^{1.47} = 2.77$$

Example 7: Let $f(x) = cx^k$. Suppose f(6.6) is 6.2 times as large as f(x) = 1.76. What is the value of k?

$$\frac{6.6}{1.76}$$
 = 3.75

$$(3.75) = 6.2$$
 $k = 1.38$
 Y_1 Y_2 $f(x) = c x^{1.38}$

$$f(x) = cx^{k}$$

Example 8: Let $f(x) = cx^{-1.32}$ and suppose f(5) = 11. Find the value of c.

$$\frac{C(5)^{-1.32}}{5^{-1.32}} = \frac{11}{5^{-1.32}} \qquad C = \frac{11}{5^{-1.32}} = 92.05$$

$$f(x) = 92.05 \times 10^{-1.32}$$

Example 9: A biologist has determined that the weight of a certain fish is a power function of its length. He also has determined that when the length doubles, the weight increases by a factor of 7.4. What is the power k?

$$2^{k} = 7.4$$
 $k = 2.89$

Comparing Exponential and Power Functions

Example 10: Let's compare $f(x) = 2^x$ and $g(x) = x^2$.

Page 4 of 5

Conclusion: Over a sufficiently large horizontal span, an exponential function (with base larger than 1) will increase much more rapidly than a power function.