Math 1311
Section 6.2

Rates of Change for Other Functions

- Notation $\frac{d f}{d x}$ means the rate of change in f with respect to x.
- $\frac{d f}{d x}$ tells how much f is expected to change if x is increased by 1 unit.
- $\frac{d f}{d x}$ is a function of x.

Example 1: If $S=S(t)$ gives directed distance for an object as a function of time t, then $\frac{d s}{d t}$ is the rate of change in directed distance with respect to time. This is velocity. $\frac{d S}{d t}$ tells the additional distance we expect to travel in 1 unit of time.

We are currently located 100 miles south of Dallas, Texas, and traveling south with a velocity of 50 miles per hour, then in 1 additional hour we would expect to be 50 miles south of Dallas.

Example 2: If $V=V(t)$ is the velocity of an object as a function of time t, then $\frac{d V}{d t}$ is the rate of change in velocity with respect to time. This is accelceration $\frac{d V}{d t}$ tells the additional velocity we expect to attain in 1 unit of time.

We are traveling with a velocity 50 miles per hour, and if we start to pass a track our acceleration might be 2 miles per hour each second. Then 1 second in the future, we would expect our velocity to be 52 miles per hour.

Example 3: If $T=T(D)$ denote the amount of income tax, in dollars, that you pay on an income of D dollars, then $\frac{d T}{d p}$ is the rate of change in tax with respect to the money you earn. This is marginal tax rate.
$\frac{d T}{d D}$ tells us the additional tax you expect to pay if you earn 1 additional dollar.
Suppose we have a tax liability of $\$ 3000$ and our marginal tax rate is $0.2 . \quad 1 \times .2=.2$
If we earn an additional $\$ 1$, we would expect our tax liability to increase by 2 Oc to a total of 3000.2
$100 \times .2=20$
If we earn an additional \$100, we would expect our tax liability to increase by $\$ 20$ to a total of 52020

Example 4: If $P=P(i)$ is the profit, in dollars, that you expect to earn on an investment of i dollars, and then $\frac{d P}{d i}$ is the rate of change in profit with respect to dollars invested.
$\frac{d P}{d i}$ tells how much additional profit to be expected if 1 additional dollar is invested.
This is

If your current investment in a project gives a profit of $\$ 1000$, and our marginal profit is 0.2 , then we would expect that an additional investment of $\$ 100$ dollars would give additional profit of $\$ 20$ for a total profit of \$ $\$$

Fundamental Properties of Rates of Change

For a function $f=f(x)$ we will use the notation $\frac{d f}{d x}$ to denote the rate of change in f with respect to x .

1. The expression $\frac{d f}{d x}$ tells us how f changes in relation to x. It gives the additional value that is expected to be added to f if x increases by 1 unit.
2. When f is increasing, $\frac{d f}{d x}$ is positive.
3. When f is decreasing, $\frac{d f}{d x}$ is negative.
4. When f is not changing, $\frac{d f}{d x}$ is zero.
5. When $\frac{d f}{d x}$ is constant, then f is a linear function with slope $\frac{d f}{d x}$.

Example 5: What is the common term for the rate of change of each of the following phenomena?
a) Directed distance as a function of time
b) Tax due as a function of income
c) Profit as a function of dollars invested
d) Velocity as a function of time

Example 6: Suppose $f=f(x)$. What is the sign of $\frac{d f}{d x}$ in each of the following situations?
a) The function f is increasing. 十
b) The function f has reached a peak. O
c) The function f is decreasing
d) The graph of f is a horizontal line.

Example 7 : Describe f if $\frac{d f}{d x}=10$. f is a linear function with

$$
\begin{array}{ll}
f(x)=10 x+b & \text { the sk } \\
\text { h of } f \text { if the graph of } \frac{d f}{d x} \text { is below the } & =10
\end{array}
$$

Example 8: What can be said about the graph of f if the graph of $\frac{d f}{d x}$ is below the $=10$ horizontal axis?

$$
\frac{d f}{d x} \text { is negative } \Rightarrow f \text { is decreasing }
$$

Example 9: Let $s(a)$ denote sales generated by spending a dollars on advertising. My goal is to increase sales. If $\frac{d s}{d a}$ is negative, should I spend more or less money on advertising?

Example 10: The price P of gasoline decreases to a minimum and starts to increase.
What is the rate of change $\frac{d P}{d t}$ of the price with respect to time t at the time when the price reaches a minimum?
$-\sum_{\min }+$
\bigcirc

