Estimating Rates of Change in Tabulated Data

If f = f(x) is a function given by a table of values, then $\frac{df}{dx}$, the rate of change of f with respect to x, cannot without further information be calculated exactly. But it can be estimated using

Average rate of change in f with respect to $x = \frac{Change \text{ in } f}{Change \text{ in } x}$

Example 1: The following table shows the location S(measured as distance in miles east of Los Angeles) of an airplane flying toward Denver.

Time	1:00 P.M.	1:30 P.M.	
Distance from L.A.	360 miles	612 miles	

Assuming the airplane is traveling at the same speed over the entire 30-minute time interval, find the velocity at 1:00 P.M.

<u>10</u>

 $\frac{612 - 360}{.5} = 504$ miles per hour

Example 2: The following table shows the population of reindeer on an island as of the given year.

t	0	5	10	15
Date	1945	1950	1955 45	1960
Population	40	165	678 +2	2793

We let t be the number of years since 1945, so that t = 0 corresponds to 1945, and we let N = N(t) denote the population size.

a) Approximate $\frac{dN}{dt}$ for 1955 using the average rate of change from 1955 to 1960, and explain what this number means in practical terms.

 $\frac{dN}{dt} = \frac{2793 - 678}{15 - 10} = \frac{2115}{5} = 423 \text{ deer per year}$

b) Use your work from part a) to estimate the population in 1957.

Rates of Change for Functions Given by Formulas

Example 3: If air resistance is ignored, elementary physics can be used to show that the rock falls $S = 16t^2$ feet during t second of fall.

- a) Compute the velocity of the rock 2.5 seconds into the fall.
 To get more reliable answer keep the interval short!
- b) Repeat the calculation using the automated features provided by the calculator.

t	2.5	2.50001		
S	601	100.0008		
S(2.5) = 6(2.5)	$5)^{2} = 100$	$\frac{ds}{ds} = \frac{100}{100}$	<u>601-8000.0</u>	= 90CL
s(2.50001) = 1	$6(2.5000)^2 = 10$	2 20.0008 2	50001-2.5	per

Example 4: If *f* is the linear function f = 7x - 3, what is the value of $\frac{df}{dx}$?

ROC = slope = 7

Example 5: Suppose f = f(x) satisfies f(2) = 5 and f(2.005) = 5.012. Estimate the value of $\frac{df}{dx}$ at x = 2. $\begin{array}{c|c} x & 2 & 2.005 \\ \hline f(x) & 5 & 5.012 \end{array}$ $\begin{array}{c|c} df & -\frac{1}{2} & -\frac{5}{2} & -\frac{5}{2} \\ \hline f(x) & 5 & 5.012 \end{array}$ $\begin{array}{c|c} df & -\frac{5}{2} & -\frac{5}{2} \\ \hline f(x) & 5 & 5.012 \end{array}$

Example 6: By direct calculation, estimate the value of $\frac{df}{dx}$ for $f(x) = x^2 + 1$ at x = 3. Use an increment of 0.0001. $f(3) = (3)^2 + 1 = 10$ $f(3) = (3.0001)^2 + 1$ $f(3) = (3.0001)^2 + 1$

Page 2 of 3

Example 7: Make a graph of $x^3 - x^2$ and use the calculator to estimate its rate of change at x = 3. The recommended horizontal span is 0 to 4 and vertical span is 0 to 30.

df for x = 3 = 21 ×min ×max Ymin Ymax

Example 8: Make a graph of $x + \frac{1}{x}$ and use the calculator to estimate its rate of change at x = 3. The recommended horizontal span is 1 to 4 and vertical span is 0 to 5.

Example 9: Make a graph of 3^{-x} and use the calculator to estimate its rate of change at x = 3. The recommended horizontal span is 0 to 4 and vertical span is -1 to 1.

$$\frac{df}{dx} = -.0407$$