Lecture 1

Section 2.1 The Ideal of Limit Section 2.2 Definition of Limit

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Graphical Introduction to Limit

$$
\lim _{x \rightarrow c} f(x)=L
$$

- In taking the limit of a function f as x approaches c, it does not matter whether f is defined at c and, if so, how it is defined there.
- The only thing that matters is the values that f takes on when x is near c.

Let $f(x)=\frac{x^{2}-9}{x-3}$. Use the graph of f to find
(a) $f(3)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$

Example

Use the graph of f to find
(a) $f(5)$
(b) $\lim _{x \rightarrow 5^{-}} f(x)$
(c) $\lim _{x \rightarrow 5^{+}} f(x)$
(d) $\lim _{x \rightarrow 5} f(x)$

Example

Use the graph of f to find
(a) $f(-2)$
(b) $\lim _{x \rightarrow-2^{-}} f(x)$
(c) $\lim _{x \rightarrow-2^{+}} f(x)$
(d) $\lim _{x \rightarrow-2} f(x)$
(e) $f(4)$
(f) $\lim _{x \rightarrow 4^{-}} f(x)$
(g) $\lim _{x \rightarrow 4^{+}} f(x)$
(h) $\lim _{x \rightarrow 4} f(x)$

Example: lim

$$
f(x)=\frac{|x|}{x}
$$

Let $f(x)=\frac{|x|}{x}$. Use the graph of f to find
(a) $f(0)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$

Example

Use the graph of f to find
(a) $f(3)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$
(e) $f(7)$
(f) $\lim _{x \rightarrow 7^{-}} f(x)$
(g) $\lim _{x \rightarrow 7^{+}} f(x)$
(h) $\lim _{x \rightarrow 7} f(x)$

Example: $\lim _{x \rightarrow 2}$

x	1.5	1.9	1.99	1.999	2	2.001	2.01	2.1	2.5
$f(x)$	-2	-10	-100	-1000		1000	100	10	2

Let $f(x)=\frac{1}{x-2}$. Use the graph of f to find
(a) $f(2)$
(b) $\lim _{x \rightarrow 2^{-}} f(x)$
(c) $\lim _{x \rightarrow 2^{+}} f(x)$
(d) $\lim _{x \rightarrow 2} f(x)$

Example

Let $f(x)=\left\{\begin{array}{ll}1-x^{2} & x<1 \\ \frac{1}{x-1} & x>1\end{array}\right.$. Use the graph of f to find
(a) $f(1)$
(b) $\lim _{x \rightarrow 1^{-}} f(x)$
(c) $\lim _{x \rightarrow 1^{+}} f(x)$
(d) $\lim _{x \rightarrow 1} f(x)$

Example: $\lim \sin \frac{\pi}{x}$

Let $f(x)=\sin \frac{\pi}{x}$. Use the graph of f to find
(a) $f(0)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$

Example

Let $f(x)=\left\{\begin{array}{ll}7, & x \text { rational } \\ 4, & x \text { irrational }\end{array}\right.$. Use the graph of f to find
(a) $f(8)$
(b) $\lim _{x \rightarrow 8^{-}} f(x)$
(c) $\lim _{x \rightarrow 8^{+}} f(x)$
(d) $\lim _{x \rightarrow 8} f(x)$

An Important Theorem

Theorem

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if both

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

Definition of Limit: ϵ, δ statement

We say that

$$
\lim _{x \rightarrow c} f(x)=L
$$

if

Example: $\lim _{x \rightarrow 2}(2 x-1)=3$

Show that $\lim _{x \rightarrow 2}(2 x-1)=3$.

Let $\epsilon>0$. We choose $\delta=\frac{1}{2} \epsilon$ such that

$$
\text { if } 0<|x-2|<\delta, \quad \text { then }|(2 x-1)-3|<\epsilon
$$

Example: $\lim _{x \rightarrow-1}(2-3 x)=5$

Show that $\lim _{x \rightarrow-1}(2-3 x)=5$.

$\lim _{x \rightarrow-1}(2-3 x)=5$

Let $\epsilon>0$. We choose $\delta=\frac{1}{3} \epsilon$ such that

$$
\text { if } 0<|x-(-1)|<\delta, \quad \text { then }|(2-3 x)-5|<\epsilon
$$

$\lim x=c$

Show that $\lim _{x \rightarrow c} x=c$.

Let $\epsilon>0$. We choose $\delta=\epsilon$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad|x-c|<\epsilon
$$

Show that $\lim _{x \rightarrow c}|x|=|c|$.

Let $\epsilon>0$. We choose $\delta=\epsilon$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad||x|-|c||<\epsilon
$$

$\lim k=k$

Show that $\lim _{x \rightarrow c} k=k$.

Let $\epsilon>0$. We can choose any number $\delta>0$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad|k-k|<\epsilon
$$

