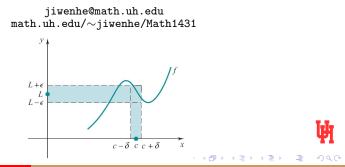
Lecture 2

Section 2.2 Definition of Limit Section 2.3 Some Limit Theorems

Jiwen He

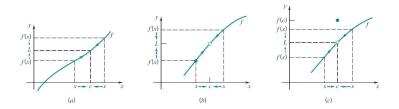
Department of Mathematics, University of Houston



Jiwen He, University of Houston

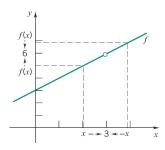
Math 1431 – Section 24076, Lecture 2

Graphical Introduction to Limit



 $\lim_{x\to c} f(x) = L$

- In taking the limit of a function f as x approaches c, it does not matter whether f is defined at c and, if so, how it is defined there.
- The only thing that matters is the values that *f* takes on when *x* is near *c*.



Let
$$f(x) = \frac{x^2 - 9}{x - 3}$$
. Use the graph of f to find
(a) $f(3)$ (b) $\lim_{x \to 3^-} f(x)$ (c) $\lim_{x \to 3^+} f(x)$ (d) $\lim_{x \to 3} f(x)$

Jiwen He, University of Houston

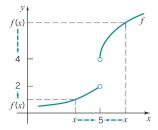
August 28, 2008 3

- < ∃ →

4

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

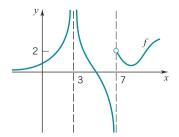


Use the graph of
$$f$$
 to find
(a) $f(5)$ (b) $\lim_{x\to 5^-} f(x)$ (c) $\lim_{x\to 5^+} f(x)$ (d) $\lim_{x\to 5} f(x)$

Jiwen He, University of Houston

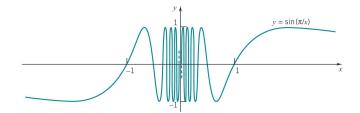
August 28, 2008

Example



Use the graph of f to find (a) f(3) (b) $\lim_{x \to 3^{-}} f(x)$ (c) $\lim_{x \to 3^{+}} f(x)$ (d) $\lim_{x \to 3} f(x)$ (f) $\lim_{x \to 7^-} f(x)$ (e) *f*(7) (g) $\lim_{x\to 7^+} f(x)$ (h) $\lim_{x\to 7} f(x)$ H

Jiwen He, University of Houston



Let
$$f(x) = \sin \frac{\pi}{x}$$
. Use the graph of f to find
(a) $f(0)$ (b) $\lim_{x \to 0^{-}} f(x)$ (c) $\lim_{x \to 0^{+}} f(x)$ (d) $\lim_{x \to 0} f(x)$

Jiwen He, University of Houston

August 28, 2008 🛛 🤇

(日) (周) (三) (三)

An Important Theorem

Theorem

$$\lim_{x\to c} f(x) = L$$

if and only if both

$$\lim_{x \to c^{-}} f(x) = L \quad and \quad \lim_{x \to c^{+}} f(x) = L$$

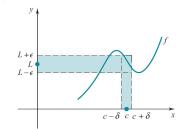
Jiwen He, University of Houston

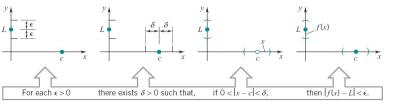
Math 1431 – Section 24076, Lecture 2

August 28, 2008

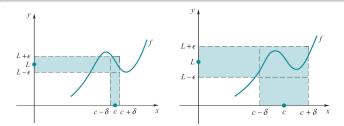
Definition of Limit: ϵ , δ statement

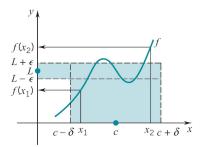
We say that $\lim_{x\to c} f(x) = L$ if for each $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$





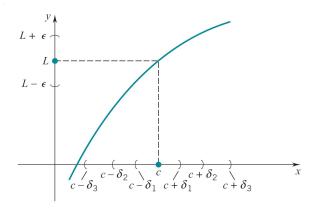
Choice of δ Depending on the Choice of ϵ





भ

Example



Which of the δ 's "works" for the given ϵ ?

(a)
$$\delta_1$$
 (b) δ_2 (c) δ_3

Jiwen He, University of Houston

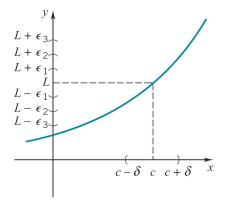
- ∢ ≣ →

< 🗇 🕨 <

1L

э

Example



For which of the ϵ 's given does the specified δ "work"?

(a)
$$\epsilon_1$$
 (b) ϵ_2 (c) ϵ_3

Jiwen He, University of Houston

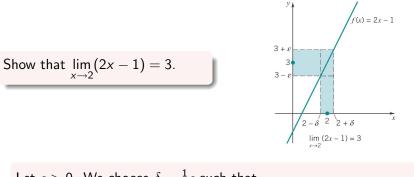
- ∢ ≣ →

.∃ →

< 🗇 🕨 <

н

Example: $\lim_{x\to 2} (2x-1) = 3$

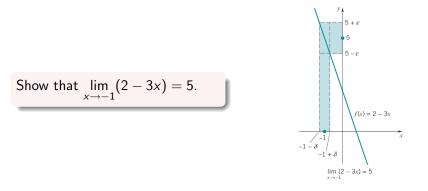


Let
$$\epsilon > 0$$
. We choose $\delta = \frac{1}{2}\epsilon$ such that
if $0 < |x - 2| < \delta$, then $|(2x - 1) - 3| < \epsilon$

Jiwen He, University of Houston

August 28, 2008

$\overline{\mathsf{E}}\mathsf{xample}: \lim_{x \to -1} (2 - 3x) = 5$



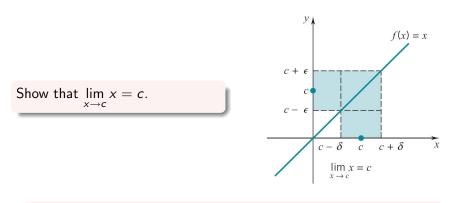
Let
$$\epsilon > 0$$
. We choose $\delta = \frac{1}{3}\epsilon$ such that
if $0 < |x - (-1)| < \delta$, then $|(2 - 3x) - 5| < \epsilon$

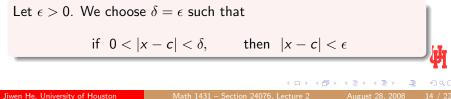
Jiwen He, University of Houston

August 28, 2008 13

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limit:

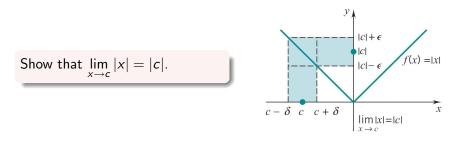
Basic Limit $\lim_{x\to c} x = c$





Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic Limits

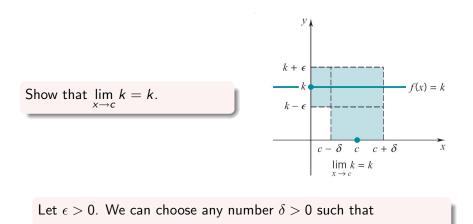
Basic Limit $\lim_{x\to c} |x| = |c|$



Let $\epsilon > 0$. We choose $\delta = \epsilon$ such that if $0 < |x - c| < \delta$, then $||x| - |c|| < \epsilon$

Review Section 2.2 Section 2.3 Definition of Limit Examples Four Basic

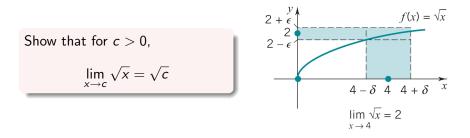
Basic Limit $\lim_{x\to c} k = k$



$$\text{if } 0 < |x - c| < \delta, \qquad \text{then } |k - k| < \epsilon$$

Definition of Limit Examples Four Basic Limits

Basic Limit $\lim_{x\to c} \sqrt{x} = \sqrt{c}$



Let $\epsilon > 0$. We choose $\delta = \min\{c, \epsilon\}$ such that if $0 < |x - c| < \delta$, then $|\sqrt{x} - \sqrt{c}| < \epsilon$

屮

Review Section 2.2 Section 2.3

ome Limit Theorems

Some Limit Theorems - Sum and Product

Theorem

If
$$\lim_{x \to c} f(x)$$
 and $\lim_{x \to c} g(x)$ each exists, then

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

$$\lim_{x \to c} (\alpha f(x)) = \alpha \lim_{x \to c} f(x)$$

$$\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$$

भ

Jiwen He, University of Houston

August 28, 2008

Some Limit Theorems - Quotient

Theorem

If
$$\lim_{x \to c} f(x)$$
 and $\lim_{x \to c} g(x)$ each exists, then
if $\lim_{x \to c} g(x) \neq 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$
if $\lim_{x \to c} g(x) = 0$ while $\lim_{x \to c} f(x) \neq 0$,
then $\lim_{x \to c} \frac{f(x)}{g(x)}$ does not exist.
if $\lim_{x \to c} g(x) = 0$ and $\lim_{x \to c} f(x) = 0$,
then $\lim_{x \to c} \frac{f(x)}{g(x)}$ may or may not exist.

呥

3 N - 3

47 ▶

Limit of a Polynomial

Theorem

Let $P(x) = a_n x^n + \dots + a_1 x + a_0$ be a polynomial and c be any number. Then

$$\lim_{x\to c} P(x) = P(c)$$

Examples

$$\lim_{x \to -1} (2x^3 + x^2 - 2x - 3) = 2(-1)^3 + (-1)^2 - 2(-1) - 3 = -2$$

$$\lim_{x \to 0} (14x^5 - 7x^2 + 2x + 8) = 14(0)^5 - 7(0)^2 + 2(0) + 8 = 8$$

Jiwen He, University of Houston

ugust 28, 2008 2

▲ □ ► ▲ □ ► ▲

Limit of a Rational Function

Theorem

Let $R(x) = \frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then If $Q(c) \neq 0$, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)} = R(c)$ 2 if Q(c) = 0 while $P(c) \neq 0$, then $\lim_{x\to c} R(x) = \lim_{x\to c} \frac{P(x)}{Q(x)}$ does not exist. **3** if Q(c) = 0 while P(c) = 0, then $\lim_{x\to c} R(x) = \lim_{x\to c} \frac{P(x)}{Q(x)}$ may or may not exist.

Examples

Examples

$$\lim_{x \to 3} \frac{x^3 - 3x^2}{1 - x^2} = \frac{(3)^3 - 3(3)^2}{1 - (3)^2} = \frac{27 - 27}{1 - 9} = 0.$$
$$\lim_{x \to 1} \frac{x^2}{x - 1} \text{ does not exist, } \lim_{x \to 1^{-}} \frac{x^2}{x - 1} = -\infty, \lim_{x \to 1^{+}} \frac{x^2}{x - 1} = \infty,$$
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{x - 3} = \lim_{x \to 3} (x + 2) = (3) + 2 = 5$$
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$

4

Jiwen He, University of Houston