Lecture 2Section 2.2 Definition of Limit Section 2.3 Some

Limit Theorems

Jiwen He

1 Review

1.1 The Ideal of Limit

Graphical Introduction to Limit

(a)

(b)

(c)

$$
\lim _{x \rightarrow c} f(x)=L
$$

- In taking the limit of a function f as x approaches c, it does not matter whether f is defined at c and, if so, how it is defined there.
- The only thing that matters is the values that f takes on when x is near c.

1.2 Examples

Example: $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=6$

Let $f(x)=\frac{x^{2}-9}{x-3}$. Use the graph of f to find
(a) $f(3)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$

Example

Use the graph of f to find
(a) $f(5)$
(b) $\lim _{x \rightarrow 5^{-}} f(x)$
(c) $\lim _{x \rightarrow 5^{+}} f(x)$
(d) $\lim _{x \rightarrow 5} f(x)$

Example

Use the graph of f to find
(a) $f(3)$
(b) $\lim _{x \rightarrow 3^{-}} f(x)$
(c) $\lim _{x \rightarrow 3^{+}} f(x)$
(d) $\lim _{x \rightarrow 3} f(x)$
(e) $f(7)$
(f) $\lim _{x \rightarrow 7^{-}} f(x)$
(g) $\lim _{x \rightarrow 7^{+}} f(x)$
(h) $\lim _{x \rightarrow 7} f(x)$

Example: $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$

Let $f(x)=\sin \frac{\pi}{x}$. Use the graph of f to find
(a) $f(0)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$

1.3 Theorem

An Important Theorem
Theorem 1.

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if both

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

2 Section 2.2 Definition of Limit

2.1 Definition of Limit

Definition of Limit: ϵ, δ statement
We say that $\quad \lim _{x \rightarrow \delta} f(x)=L$
if for each $\epsilon>0$, there exists a $\delta \stackrel{x \rightarrow 0}{>}$ such that

$$
\text { if } 0<|x-c|<\delta, \text { then }|f(x)-L|<\epsilon
$$

Choice of δ Depending on the Choice of ϵ

Example

Which of the δ 's "works" for the given ϵ ?
(a) δ_{1}
(b) δ_{2}
(c) δ_{3}

Example

For which of the ϵ 's given does the specified δ "work"?
(a) ϵ_{1})
(b) ϵ_{2}
(c) ϵ_{3}

2.2 Examples

Example: $\lim _{\lim }(2 x-1)=3$
Show that $\lim _{x \rightarrow 2} \vec{m}^{2}(2 x-1)=3$.

Let $\epsilon>0$. We choose $\delta=\frac{1}{2} \epsilon$ such that

$$
\text { if } 0<|x-2|<\delta, \quad \text { then } \quad|(2 x-1)-3|<\epsilon
$$

Example: $\lim (2-3 x)=5$
Show that $\lim _{x \rightarrow-1}^{-}(2-3 x)=5$.

Let $\epsilon>0$. We choose $\delta=\frac{1}{3} \epsilon$ such that

$$
\text { if } 0<|x-(-1)|<\delta, \quad \text { then }|(2-3 x)-5|<\epsilon
$$

2.3 Four Basic Limits

Basic Limit $\lim x=c$
Show that $\lim _{x \rightarrow c}^{x} \vec{x} \xlongequal{c} c$.

Let $\epsilon>0$. We choose $\delta=\epsilon$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad|x-c|<\epsilon
$$

Basic Limit lim $|x|=|c|$
Show that $\lim _{x \rightarrow c}^{x}|\vec{x}|=|c|$.

Let $\epsilon>0$. We choose $\delta=\epsilon$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad \| x|-|c||<\epsilon
$$

Basic Limit $\lim k=k$
Show that $\lim _{x \rightarrow c} x \neq k$.

Let $\epsilon>0$. We can choose any number $\delta>0$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad|k-k|<\epsilon
$$

Basic Limit $\lim \sqrt{x}=\sqrt{c}$
Show that for ${ }^{x} \subset \ggg 5$,

$$
\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}
$$

Let $\epsilon>0$. We choose $\delta=\min \{c, \epsilon\}$ such that

$$
\text { if } 0<|x-c|<\delta, \quad \text { then } \quad|\sqrt{x}-\sqrt{c}|<\epsilon
$$

3 Section 2.3 Some Limit Theorems

3.1 Some Limit Theorems

Some Limit Theorems - Sum and Product
Theorem 2. If $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ each exists, then

1. $\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$
2. $\lim _{x \rightarrow c}(\alpha f(x))=\alpha \lim _{x \rightarrow c} f(x)$
3. $\lim _{x \rightarrow c}(f(x) g(x))=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} g(x)$

4. if $\lim _{x \rightarrow c} g(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$
5. if $\lim _{x \rightarrow c} g(x)=0$ while $\lim _{x \rightarrow c} f(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ does not exist.
6. if $\lim _{x \rightarrow c} g(x)=0$ and $\lim _{x \rightarrow c} f(x)=0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ may or may not exist.

Limit of a Polynomial

Theorem 4. Let $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial and c be any number. Then

$$
\lim _{x \rightarrow c} P(x)=P(c)
$$

Examples 5.

$$
\begin{gathered}
\lim _{x \rightarrow-1}\left(2 x^{3}+x^{2}-2 x-3\right)=2(-1)^{3}+(-1)^{2}-2(-1)-3=-2 \\
\lim _{x \rightarrow 0}\left(14 x^{5}-7 x^{2}+2 x+8\right)=14(0)^{5}-7(0)^{2}+2(0)+8=8
\end{gathered}
$$

Limit of a Rational Function

Theorem 6. Let $R(x)=\frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then

1. if $Q(c) \neq 0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}=R(c)$
2. if $Q(c)=0$ while $P(c) \neq 0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}$ does not exist.
3. if $Q(c)=0$ while $P(c)=0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}$ may or may not exist.

Examples

Examples 7.

$$
\begin{gathered}
\lim _{x \rightarrow 3} \frac{x^{3}-3 x^{2}}{1-x^{2}}=\frac{(3)^{3}-3(3)^{2}}{1-(3)^{2}}=\frac{27-27}{1-9}=0 . \\
\lim _{x \rightarrow 1} \frac{x^{2}}{x-1} \text { does not exist, } \lim _{x \rightarrow 1^{-}} \frac{x^{2}}{x-1}=-\infty, \lim _{x \rightarrow 1^{+}} \frac{x^{2}}{x-1}=\infty, \\
\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{x-3}=\lim _{x \rightarrow 3}(x+2)=(3)+2=5 \\
\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)}=\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1}=\frac{1}{2}
\end{gathered}
$$

