Lecture 2Section 2.2 Definition of Limit Section 2.3 Some Limit Theorems

Jiwen He

1 Review

1.1 The Ideal of Limit Graphical Introduction to Limit

- In taking the limit of a function f as x approaches c, it does not matter whether f is defined at c and, if so, how it is defined there.
- The only thing that matters is the values that f takes on when x is near c.

1.2 Examples

Let $f(x) = \frac{x^2 - 9}{x - 3}$. Use the graph of f to find (a) f(3) (b) $\lim_{x \to 3^-} f(x)$ (c) $\lim_{x \to 3^+} f(x)$ (d) $\lim_{x \to 3} f(x)$

Example

Use the graph of f to find

(a) f(5) (b) $\lim_{x \to 5^{-}} f(x)$ (c) $\lim_{x \to 5^{+}} f(x)$ (d) $\lim_{x \to 5} f(x)$

Example

Use the graph of f to find

(a)
$$f(3)$$
 (b) $\lim_{x \to 3^{-}} f(x)$ (c) $\lim_{x \to 3^{+}} f(x)$ (d) $\lim_{x \to 3} f(x)$
(e) $f(7)$ (f) $\lim_{x \to 7^{-}} f(x)$ (g) $\lim_{x \to 7^{+}} f(x)$ (h) $\lim_{x \to 7} f(x)$

Let $f(x) = \sin \frac{\pi}{x}$. Use the graph of f to find

(a)
$$f(0)$$
 (b) $\lim_{x \to 0^-} f(x)$ (c) $\lim_{x \to 0^+} f(x)$ (d) $\lim_{x \to 0} f(x)$

1.3 Theorem

An Important Theorem

Theorem 1.

$$\lim_{x \to c} f(x) = L$$

if and only if both

$$\lim_{x \to c^-} f(x) = L \quad and \quad \lim_{x \to c^+} f(x) = L$$

2 Section 2.2 Definition of Limit

2.1 Definition of Limit

Choice of δ Depending on the Choice of ϵ

У↓

Which of the δ 's "works" for the given ϵ ?

(a)
$$\delta_1$$
 (b) δ_2 (c) δ_3

Example

For which of the ϵ 's given does the specified δ "work"?

(a)
$$\epsilon_1$$
) (b) ϵ_2 (c) ϵ_3

2.2 Examples

Example: $\lim_{x\to 2} (2x-1) = 3$ Show that $\lim_{x\to 2} (2x-1) = 3$.

Let $\epsilon > 0$. We choose $\delta = \frac{1}{2}\epsilon$ such that

if $0 < |x-2| < \delta$, then $|(2x-1) - 3| < \epsilon$

Example: $\lim_{\substack{x \to -1 \\ x \to -1}} (2 - 3x) = 5$.

Let $\epsilon > 0$. We choose $\delta = \frac{1}{3}\epsilon$ such that

if $0 < |x - (-1)| < \delta$, then $|(2 - 3x) - 5| < \epsilon$

2.3 Four Basic Limits

Basic Limit $\lim_{x\to c} x = c$ Show that $\lim_{x\to c} \overline{x} = c$.

Let $\epsilon > 0$. We choose $\delta = \epsilon$ such that

if
$$0 < |x - c| < \delta$$
, then $|x - c| < \epsilon$

Basic Limit $\lim_{x \to c} |x| = |c|$ Show that $\lim_{x \to c} |x|^c = |c|$.

Let $\epsilon > 0$. We choose $\delta = \epsilon$ such that

if
$$0 < |x - c| < \delta$$
, then $||x| - |c|| < \epsilon$

Basic Limit $\lim_{x\to c} k = k$ Show that $\lim_{x\to c} k \stackrel{c}{=} k$.

Let $\epsilon > 0$. We can choose any number $\delta > 0$ such that

 $\text{if } 0 < |x-c| < \delta, \qquad \text{then } |k-k| < \epsilon$

Basic Limit $\lim_{x \to \infty} \sqrt{x} = \sqrt{c}$ Show that for $x \to 0$,

$$\lim_{x \to c} \sqrt{x} = \sqrt{c}$$

Let $\epsilon > 0$. We choose $\delta = \min\{c, \epsilon\}$ such that

if $0 < |x - c| < \delta$, then $|\sqrt{x} - \sqrt{c}| < \epsilon$

3 Section 2.3 Some Limit Theorems

3.1 Some Limit Theorems

Some Limit Theorems - Sum and Product

Theorem 2. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ each exists, then

- 1. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
- 2. $\lim_{x \to c} (\alpha f(x)) = \alpha \lim_{x \to c} f(x)$
- 3. $\lim_{x \to c} (f(x) g(x)) = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$

Some Limit Theorems - Quotient Theorem 3. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ each exists, then

1. if
$$\lim_{x \to c} g(x) \neq 0$$
, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$

2. if
$$\lim_{x \to c} g(x) = 0$$
 while $\lim_{x \to c} f(x) \neq 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)}$ does not exist.
3. if $\lim_{x \to c} g(x) = 0$ and $\lim_{x \to c} f(x) = 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)}$ may or may not exist.

Limit of a Polynomial

Theorem 4. Let $P(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial and c be any number. Then

$$\lim_{x \to c} P(x) = P(c)$$

Examples 5.

$$\lim_{x \to -1} (2x^3 + x^2 - 2x - 3) = 2(-1)^3 + (-1)^2 - 2(-1) - 3 = -2$$
$$\lim_{x \to 0} (14x^5 - 7x^2 + 2x + 8) = 14(0)^5 - 7(0)^2 + 2(0) + 8 = 8$$

Limit of a Rational Function

Theorem 6. Let $R(x) = \frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then

1. if
$$Q(c) \neq 0$$
, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)} = R(c)$

- 2. if Q(c) = 0 while $P(c) \neq 0$, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)}$ does not exist.
- 3. if Q(c) = 0 while P(c) = 0, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)}$ may or may not exist.

Examples

Examples 7.

$$\lim_{x \to 3} \frac{x^3 - 3x^2}{1 - x^2} = \frac{(3)^3 - 3(3)^2}{1 - (3)^2} = \frac{27 - 27}{1 - 9} = 0.$$
$$\lim_{x \to 1} \frac{x^2}{x - 1} \text{ does not exist, } \lim_{x \to 1^-} \frac{x^2}{x - 1} = -\infty, \lim_{x \to 1^+} \frac{x^2}{x - 1} = \infty,$$
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 2)}{x - 3} = \lim_{x \to 3} (x + 2) = (3) + 2 = 5$$
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{(x - 1)(\sqrt{x} + 1)} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1} = \frac{1}{2}$$