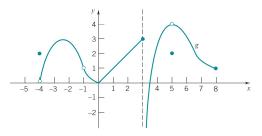
Lecture 3 Section 2.4 Continuity

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/Math1431



Homework and Quizzes

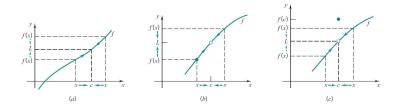
Homework 1 & 2

- Homework 1 is due September 4th in lab.
- Homework 2 is due September 9th in lab.

Quizzes 1 & 2

• Quizzes 1 and 2 are available on CourseWare!

The Ideal of Limits



Theorem

$$\lim_{x\to c} f(x) = L$$

if and only if both

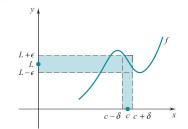
$$\lim_{x \to c^{-}} f(x) = L \quad and \quad \lim_{x \to c^{+}} f(x) = L$$

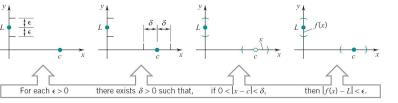
Jiwen He, University of Houston

3

Definition of Limit: ϵ , δ statement

We say that $\lim_{x\to c} f(x) = L$ if for each $\epsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$





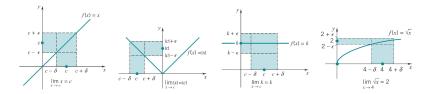
Four Basic Limits

$$\lim_{x \to c} x = c.$$

$$\lim_{x \to c} |x| = |c|.$$

$$\lim_{x \to c} k = k.$$

$$\lim_{x \to c} \sqrt{x} = \sqrt{c}, \text{ for } c > 0.$$



A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ → (∃ →

4

Review Continuity

Theorem

If
$$\lim_{x \to c} f(x)$$
 and $\lim_{x \to c} g(x)$ each exists, then
a) $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
b) $\lim_{x \to c} (\alpha f(x)) = \alpha \lim_{x \to c} f(x)$
c) $\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$

Theorem

Let $P(x) = a_n x^n + \dots + a_1 x + a_0$ be a polynomial and c be any number. Then

$$\lim_{x\to c} P(x) = P(c)$$

Jiwen He, University of Houston

Limit Properties of Limits

(日) (同) (三) (三)

Limits of Quotients

Theorem

If
$$\lim_{x \to c} f(x)$$
 and $\lim_{x \to c} g(x)$ each exists, then
if $\lim_{x \to c} g(x) \neq 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$
if $\lim_{x \to c} g(x) = 0$ while $\lim_{x \to c} f(x) \neq 0$,
then $\lim_{x \to c} \frac{f(x)}{g(x)}$ does not exist.
if $\lim_{x \to c} g(x) = 0$ and $\lim_{x \to c} f(x) = 0$,
then $\lim_{x \to c} \frac{f(x)}{g(x)}$ may or may not exist.

屮

4

Limits of Rational Functions

Theorem

Let $R(x) = \frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then If $Q(c) \neq 0$, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)} = R(c)$ 2 if Q(c) = 0 while $P(c) \neq 0$, then $\lim_{x\to c} R(x) = \lim_{x\to c} \frac{P(x)}{Q(x)}$ does not exist. **3** if Q(c) = 0 while P(c) = 0, then $\lim_{x\to c} R(x) = \lim_{x\to c} \frac{P(x)}{Q(x)}$ may or may not exist.

Jiwen He, University of Houston

Definition of Continuity at a Point

Definition

Let f be a function defined on an open interval centered at c. We say that f is continuous at c if

$$\lim_{x\to c}f(x)=f(c).$$

Remark

- f is continuous at c if
 - f is defined at c.
 - $\lim_{x \to c} f(x) \text{ exists, and}$

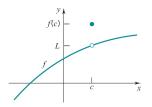
$$\lim_{x\to c}f(x)=f(c).$$

Review Continuity

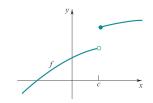
a Point One Sided On Interva

Three Types of "Simple" Discontinuity

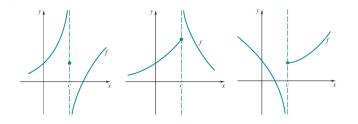
"Removable" Discontinuity



"Jump" Discontinuity



"Infinite" Discontinuity

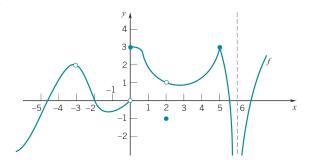


Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 3

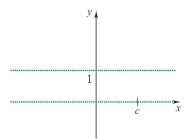
10 / 10

Example



At which points is f discontinuous? And what type of discontinuity does f have?

Dirichlet Function (Discontinuous Everywhere)



Let
$$f(x) = \begin{cases} 1, & x \text{ rational,} \\ 0, & x \text{ irrational.} \end{cases}$$

At no point c does f have a limit, thus f is everywhere discontinuous.

Math 1431 – Section 24076, Lecture 3

< ≧ ► < ≧ ► eptember 2, 2008

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Continuity Properties of Sums, Products and Quotients

Theorem

If f and g are continuous at c, then

- **(**) f + g and f g are continuous at c.
- 2 k f is continuous at c for each real k.
- **3** $f \cdot g$ is continuous at c.

4 f/g is continuous at c provided $g(c) \neq 0$.

Theorem

- The absolute function |x| is continuous everywhere.
- The square root function √x is continuous at any positive number.
- Polynomials are continuous everywhere.
- Rational Functions are continuous everywhere they are defined.

Continuity Properties of Compositions

Theorem

If g is continuous at c and f is continuous at g(c), then the composition $f \circ g$ is continuous at c.

Examples

F(x) = √(x²+1)/(x-3) is continuous wherever it is defined, i.e., at any number c > 3. Note that F = f ∘ g where f(x) = √x and g(x) = x²+1/(x-3).
F(x) = 1/(5-√x²+16) is continuous wherever it is defined, i.e., at any number c ≠ ±3. Note that F = f ∘ g ∘ h where f(x) = 1/(5-x), g(x) = √x and h(x) = x²+16.

イロト イポト イヨト イヨト

4 / 16

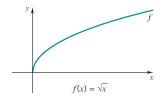
One Sided Continuity

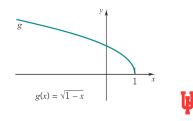
Definition

f is left continuous at c if lim_{x→c⁻} f(x) = f(c).
f is right continuous at c if lim_{x→c⁺} f(x) = f(c).

 $f(x) = \sqrt{x}$ is right-continuous at 0.

 $f(x) = \sqrt{1-x}$ is left-continuous at 1.



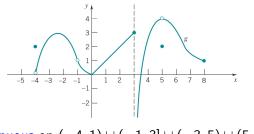


Continuity on Intervals

Definition

Let *I* be an interval of form: (a, b), [a, b], [a, b), (a, b], (a, ∞) , $[a, \infty)$, $(-\infty, b)$, $(-\infty, b]$, or $(-\infty, \infty)$. The *f* is said to be continuous on *I* if for every number *c* in *I*,

- f is continuous at c if c is not an endpoint of I,
- f is left continuous at c if c is a right-endpoint of I,
- f is right continuous at c if c is a left-endpoint of I.



continuous on $(-4, 1) \cup (-1, 3] \cup (-3, 5) \cup (5, 8]$.

Jiwen He, University of Houston

Math 1431 - Section 24076, Lecture