Lecture 3section 2.4 Continuity

Jiwen He

1 Review

1.1 Limits
Homework and Quizzes

Homework 1 & 2
e Homework 1 is due September 4th in lab.

e Homework 2 is due September 9th in lab.

Quizzes 1 & 2

e Quizzes 1 and 2 are available on CourseWare!

Theorem 1.

lim f(z) =L
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if and only if both

lim f(xr)=L and lim f(x)=1L
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ﬁnitiﬁn of Limit: ¢, § statement
e say that lim f(z) =L

if for each € > 0, there exists a § > ( such that
if 0<|z—c| <9, then |f(z)—L|<e

L +e
Le®
L—e€

c—-0 ¢cc+0 X

0 A o SN o S

there exists & > O such that, if 0<lx—cl<s. then |/(x) - Ll <e.

| For each € >0

1.2 Properties of Limits

Four Basic Limits

1. imxz=c.
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2. lim |z| = |¢|.
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3. limk =k.
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4. lim v/z = /¢, for ¢ > 0.
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Limits of Sums and Products - Polynomials

Theorem 2. If lim f(z) and lim g(z) each exists, then
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1. lim(f(x) + g(x)) = lim f(2) + lim g(x)
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2. lim(a f(z) =« i:rrlcf(x)
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3. lim(f(z) g(z)) = lim f(z) lim g(x)

Theorem 3. Let P(x) = apz™ + - -
number. Then
lim P(z) = P(c)
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+ a1x 4+ ag be a polynomial and c be any
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o B - . f(x) :
2. if lim g(x) = 0 while lim f(x) # 0, then lim o) does not exist.

o B ) B . f(x) )
3. if lim g(x) = 0 and lim f(x) =0, then lim 7@ may or may not exist.
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Limits of Rational Functions

P
Theorem 5. Let R(z) = QEI; be a rational function (a quotient of two poly-
x

nomials) and let ¢ be a number. Then

. . P(z)  P(c)
L i Q(e) #0, then lim R(z) = lim 75 = 503




2. if Q(c) = 0 while P(c) # 0, then lim R(z) = lim gég does not exist.
(

3. if Q() = 0 while P(c) = 0, then lim R(x) = lim g (3

may or may not

exist.

2 Section 2.4 Continuity

2.1 Continuity at a Point
Definition of Continuity at a Point,

Definition 6. Let f be a function defined on an open interval centered at c.
We say that f is continuous at c if

lim f(z) = f(c).
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Remark
f is continuous at c if

1. f is defined at ¢,

2. lim f(x) exists, and
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3. lim f(x) = f(c).
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Three Types of “Simple” Discontinuity
“Removable” Discontinuity
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“Jump” Discontinuity
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“Infinite” Discontinuity
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At which points is f discontinuous? And what type of discontinuity does f
have?

Dirichlet Function (Discontinuous Everywhere)



1, =z rational

L = ’ P
ot (@) { 0, =« irrational.

is everywhere discontinuous.

[2ex] At no point ¢ does f have a limit, thus f

Continuity Properties of Sums, Products and Quotients
Theorem 7. If f and g are continuous at ¢, then

1. f+g and f — g are continuous at c.
2. k f is continuous at ¢ for each real k.
3. f-g is continuous at c.
4. f/g is continuous at ¢ provided g(c) # 0.

Theorem 8. e The absolute function || is continuous everywhere.
e The square oot function v/ is continuous at any positive number.
e Polynomials are continuous everywhere.

e Rational Functions are continuous everywhere they are defined.

Continuity Properties of Compositions

Theorem 9. If g is continuous at ¢ and f is continuous at g(c), then the
composition f o g is continuous at c.
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Ezamples 10. o F(x) = 3 is continuous wherever it is defined, i.e.,

at any number ¢ > 3. Note that F' = f o g where f(z) = /z and

_ 2%+1
g(x) = ng

o F(z) = o

5—+vx2+16

number ¢ # +3. Note that F' = f o goh where f(z) = 1, g(z) = x
and h(x) = 22 + 16.

is continuous wherever it is defined, i.e., at any



2.2  One Sided Continuity
One Sided Continuity
Definition 11. e f is left continuous at ¢ if lim f(z) = f(c).

e f is right continuous at ¢ if lim f(z) = f(c¢).
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f(z) = /z is right-continuous at 0.
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2.3 Continuity on Intervals

Continuity on Intervals



Definition 12. Let I be an interval of form: (a,b), [a,b], [a,)), (a,b], (a,00),
[a,00), (—00,b), (—00,b], or (—o0,00). The f is said to be continuous on I if
for every number ¢ in I,

e f is continuous at c if ¢ is not an endpoint of I,
e f is left continuous at c if ¢ is a right-endpoint of I,

e f is right continuous at c if ¢ is a left-endpoint of 1.
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