Lecture 3Section 2.4 Continuity

Jiwen He

1 Review

1.1 Limits

Homework and Quizzes

Homework 1 \& 2

- Homework 1 is due September 4th in lab.
- Homework 2 is due September 9th in lab.

Quizzes 1 \& 2

- Quizzes 1 and 2 are available on CourseWare!

The thonl of timitn

(a)

(b)

(c)

Theorem 1.

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if both

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L
$$

Befinition of Limit: ϵ, δ statement
We say that $\quad \lim f(x)=L$
if for each $\epsilon>0$, there exists a $\delta \stackrel{x \rightarrow 0}{>}$ such that
if $0<|x-c|<\delta$, then $|f(x)-L|<\epsilon$

1.2 Properties of Limits

Four Basic Limits

1. $\lim _{x \rightarrow c} x=c$.
2. $\lim _{x \rightarrow c}|x|=|c|$.
3. $\lim _{x \rightarrow c} k=k$.
4. $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}$, for $c>0$.

Limits of Sums and Products - Polynomials

Theorem 2. If $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ each exists, then

1. $\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$
2. $\lim _{x \rightarrow c}(\alpha f(x))=\alpha \lim _{x \rightarrow c} f(x)$
3. $\lim _{x \rightarrow c}(f(x) g(x))=\lim _{x \rightarrow c} f(x) \lim _{x \rightarrow c} g(x)$

Theorem 3. Let $P(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$ be a polynomial and c be any number. Then

$$
\lim _{x \rightarrow c} P(x)=P(c)
$$

Limits of Quqtients $\lim _{x \rightarrow c}(x)$ and $\lim _{x \rightarrow c} g(x)$ each exists, then

1. if $\lim _{x \rightarrow c} g(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$
2. if $\lim _{x \rightarrow c} g(x)=0$ while $\lim _{x \rightarrow c} f(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ does not exist.
3. if $\lim _{x \rightarrow c} g(x)=0$ and $\lim _{x \rightarrow c} f(x)=0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ may or may not exist.

Limits of Rational Functions

Theorem 5. Let $R(x)=\frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then

1. if $Q(c) \neq 0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}=R(c)$
2. if $Q(c)=0$ while $P(c) \neq 0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}$ does not exist.
3. if $Q(c)=0$ while $P(c)=0$, then $\lim _{x \rightarrow c} R(x)=\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}$ may or may not exist.

2 Section 2.4 Continuity

2.1 Continuity at a Point

Definition of Continuity at a Point
Definition 6. Let f be a function defined on an open interval centered at c.
We say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Remark

f is continuous at c if

1. f is defined at c,
2. $\lim _{x \rightarrow c} f(x)$ exists, and
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Three Types of "Simple" Discontinuity

"Removable" Discontinuity

"Jump" Discontinuity

"Infinite" Discontinuity

Example

At which points is f discontinuous? And what type of discontinuity does f have?

Dirichlet Function (Discontinuous Everywhere)

Let $f(x)=\left\{\begin{array}{ll}1, & x \text { rational, } \\ 0, & x \text { irrational. }\end{array} \quad[2 \mathrm{ex}]\right.$ At no point c does f have a limit, thus f is everywhere discontinuous.

Continuity Properties of Sums, Products and Quotients

Theorem 7. If f and g are continuous at c, then

1. $f+g$ and $f-g$ are continuous at c.
2. $k f$ is continuous at c for each real k.
3. $f \cdot g$ is continuous at c.
4. f / g is continuous at c provided $g(c) \neq 0$.

Theorem 8. - The absolute function $|x|$ is continuous everywhere.

- The square root function \sqrt{x} is continuous at any positive number.
- Polynomials are continuous everywhere.
- Rational Functions are continuous everywhere they are defined.

Continuity Properties of Compositions

Theorem 9. If g is continuous at c and f is continuous at $g(c)$, then the composition $f \circ g$ is continuous at c.

Examples 10. - $F(x)=\sqrt{\frac{x^{2}+1}{x-3}}$ is continuous wherever it is defined, i.e., at any number $c>3$. Note that $F=f \circ g$ where $f(x)=\sqrt{x}$ and $g(x)=\frac{x^{2}+1}{x-3}$.

- $F(x)=\frac{1}{5-\sqrt{x^{2}+16}}$ is continuous wherever it is defined, i.e., at any number $c \neq \pm 3$. Note that $F=f \circ g \circ h$ where $f(x)=\frac{1}{5-x}, g(x)=\sqrt{x}$ and $h(x)=x^{2}+16$.

2.2 One Sided Continuity

One Sided Continuity
Definition 11. - f is left continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.

- f is right continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.
$f(x)=\sqrt{x}$ is right-continuous at 0.

$f(x)=\sqrt{1-x}$ is left-continuous at 1.

2.3 Continuity on Intervals

Continuity on Intervals

Definition 12. Let I be an interval of form: $(a, b),[a, b],[a, b),(a, b],(a, \infty)$, $[a, \infty),(-\infty, b),(-\infty, b]$, or $(-\infty, \infty)$. The f is said to be continuous on I if for every number c in I,

- f is continuous at c if c is not an endpoint of I,
- f is left continuous at c if c is a right-endpoint of I,
- f is right continuous at c if c is a left-endpoint of I.

