Lecture 3_{Section 2.4} Continuity

Jiwen He

1 Review

1.1 Limits

Homework and Quizzes

Homework 1 & 2

- Homework 1 is due September 4th in lab.
- Homework 2 is due September 9th in lab.

Quizzes 1 & 2

• Quizzes 1 and 2 are available on CourseWare!

Theorem 1.

$$\lim_{x \to c} f(x) = L$$

if and only if both

$$\lim_{x \to c^-} f(x) = L \quad and \quad \lim_{x \to c^+} f(x) = L$$

1.2 Properties of Limits

Four Basic Limits

1.
$$\lim_{x \to c} x = c.$$

2.
$$\lim_{x \to c} |x| = |c|.$$

3.
$$\lim_{x \to c} k = k.$$

4.
$$\lim_{x \to c} \sqrt{x} = \sqrt{c}, \text{ for } c > 0.$$

$$f(x) = x$$

$$c + e$$

$$c - e$$

$$c - e$$

$$c - \delta$$

$$k + e$$

$$k - e$$

$$k$$

Limits of Sums and Products - Polynomials

Theorem 2. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ each exists, then

- 1. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ 2. $\lim_{x \to c} (\alpha f(x)) = \alpha \lim_{x \to c} f(x)$
- 3. $\lim_{x \to c} (f(x) g(x)) = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$

Theorem 3. Let $P(x) = a_n x^n + \cdots + a_1 x + a_0$ be a polynomial and c be any number. Then

$$\lim_{x \to c} P(x) = P(c)$$

Limits of Quotients Theorem 4. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ each exists, then

1. if
$$\lim_{x \to c} g(x) \neq 0$$
, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$
2. if $\lim_{x \to c} g(x) = 0$ while $\lim_{x \to c} f(x) \neq 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)}$ does not exist.
3. if $\lim_{x \to c} g(x) = 0$ and $\lim_{x \to c} f(x) = 0$, then $\lim_{x \to c} \frac{f(x)}{g(x)}$ may or may not exist.

Limits of Rational Functions

Theorem 5. Let $R(x) = \frac{P(x)}{Q(x)}$ be a rational function (a quotient of two polynomials) and let c be a number. Then

1. if
$$Q(c) \neq 0$$
, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)} = R(c)$

2. if
$$Q(c) = 0$$
 while $P(c) \neq 0$, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)}$ does not exist

3. if Q(c) = 0 while P(c) = 0, then $\lim_{x \to c} R(x) = \lim_{x \to c} \frac{P(x)}{Q(x)}$ may or may not exist.

2 Section 2.4 Continuity

2.1 Continuity at a Point

Definition of Continuity at a Point Definition 6. Let f be a function defined on an open interval centered at c. We say that f is continuous at c if

$$\lim_{x \to c} f(x) = f(c).$$

Remark

f is continuous at c if

- 1. f is defined at c,
- 2. $\lim_{x \to c} f(x)$ exists, and

3.
$$\lim_{x \to c} f(x) = f(c).$$

Three Types of "Simple" Discontinuity

"Removable" Discontinuity

"Jump" Discontinuity

At which points is f discontinuous? And what type of discontinuity does f have?

Dirichlet Function (Discontinuous Everywhere)

Let $f(x) = \begin{cases} 1, & x \text{ rational,} \\ 0, & x \text{ irrational.} \end{cases}$ [2ex] At no point c does f have a limit, thus f is everywhere discontinuous.

Continuity Properties of Sums, Products and Quotients Theorem 7. If f and g are continuous at c, then

- 1. f + g and f g are continuous at c.
- 2. k f is continuous at c for each real k.
- 3. $f \cdot g$ is continuous at c.
- 4. f/g is continuous at c provided $g(c) \neq 0$.

Theorem 8. • The absolute function |x| is continuous everywhere.

- The square root function \sqrt{x} is continuous at any positive number.
- Polynomials are continuous everywhere.
- Rational Functions are continuous everywhere they are defined.

Continuity Properties of Compositions

Theorem 9. If g is continuous at c and f is continuous at g(c), then the composition $f \circ g$ is continuous at c.

Examples 10. • $F(x) = \sqrt{\frac{x^2 + 1}{x - 3}}$ is continuous wherever it is defined, i.e., at any number c > 3. Note that $F = f \circ g$ where $f(x) = \sqrt{x}$ and $g(x) = \frac{x^2 + 1}{x - 3}$.

• $F(x) = \frac{1}{5 - \sqrt{x^2 + 16}}$ is continuous wherever it is defined, i.e., at any number $c \neq \pm 3$. Note that $F = f \circ g \circ h$ where $f(x) = \frac{1}{5-x}$, $g(x) = \sqrt{x}$ and $h(x) = x^2 + 16$.

2.2 One Sided Continuity

One Sided Continuity

Definition 11. • f is left continuous at c if $\lim_{x \to c^-} f(x) = f(c)$.

• f is right continuous at c if $\lim_{x\to c^+} f(x) = f(c)$.

 $f(x) = \sqrt{x}$ is right-continuous at 0.

 $f(x) = \sqrt{1-x}$ is left-continuous at 1.

2.3 Continuity on Intervals Continuity on Intervals

Definition 12. Let *I* be an interval of form: (a, b), [a, b], [a, b), (a, b], (a, ∞) , $[a, \infty)$, $(-\infty, b)$, $(-\infty, b]$, or $(-\infty, \infty)$. The *f* is said to be continuous on *I* if for every number *c* in *I*,

- f is continuous at c if c is not an endpoint of I,
- f is left continuous at c if c is a right-endpoint of I,
- f is right continuous at c if c is a left-endpoint of I.

