Lecture 4Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity

Jiwen He

1 Review

1.1 Continuity

Homework and Quizzes

Homework 1 & 2

- Homework 1 is due September 4th in lab.
- Homework 2 is due September 9th in lab.

Quizzes 1, 2 & 3

- Quizzes 1, 2 and 3 are available on CourseWare!
- Quizzes 1 and 2 are due on this Friday!

Daily Grades

- Daily grades will be given in lecture beginning next Tuesday.
- The daily grades form is posted on the course homepage. You must print out this form and *BRING it to class every day*.
- Questions will be asked in lecture at random times.
- You will mark your answers on the daily grades form and drop the form in a box at the end of class.

Weekly Written Quizzes in Lab

- Quizzes will be given every week on Thursday in lab beginning the next week.
- The weekly written quizzes form is posted on the course homepage. You must print out this form and *BRING it to class every Thursday*.

Definition of Continuity at a Point Definition 1. Let f be a function defined on an open interval centered at c. We say that f is continuous at c if

$$\lim_{x \to c} f(x) = f(c).$$

Remark

f is continuous at c if

- 1. f is defined at c,
- 2. $\lim_{x \to c} f(x)$ exists, and

3.
$$\lim_{x \to c} f(x) = f(c).$$

Three Types of "Simple" Discontinuity "Removable" Discontinuity

"Jump" Discontinuity

At which points is f discontinuous? And what type of discontinuity does f have?

Continuity Properties of Elementary Functions

Theorem 2. • The absolute function f(x) = |x| is continuous everywhere.

- The square root function $f(x) = \sqrt{x}$ is continuous at any positive number.
- Polynomials are continuous everywhere.
- Rational Functions are continuous everywhere defined.

Continuity Properties of Sums, Products and Quotients

Theorem 3. If f and g are continuous at c, then

- 1. f + g and f g are continuous at c.
- 2. k f is continuous at c for each real k.
- 3. $f \cdot g$ is continuous at c.
- 4. f/g is continuous at c provided $g(c) \neq 0$.

Continuity Properties of Compositions

Theorem 4. If g is continuous at c and f is continuous at g(c), then the composition $f \circ g$ is continuous at c.

Examples 5. • $F(x) = \sqrt{\frac{x^2 + 1}{x - 3}}$ is continuous wherever it is defined, i.e., at any number c > 3. Note that $F = f \circ g$ where $f(x) = \sqrt{x}$ and $g(x) = \frac{x^2 + 1}{x - 3}$.

One Sided Continuity

Definition 6. • f is left continuous at c if $\lim_{x \to c^-} f(x) = f(c)$.

• f is right continuous at c if $\lim_{x \to c^+} f(x) = f(c)$.

 $f(x) = \sqrt{x}$ is right-continuous at 0.

 $f(x) = \sqrt{1-x}$ is left-continuous at 1.

Continuity on Intervals

Definition 7. Let *I* be an interval of form: (a, b), [a, b], [a, b), (a, b], (a, ∞) , $[a, \infty)$, $(-\infty, b)$, $(-\infty, b]$, or $(-\infty, \infty)$. The *f* is said to be continuous on *I* if for every number *c* in *I*,

- f is continuous at c if c is not an endpoint of I,
- f is left continuous at c if c is a right-endpoint of I,
- f is right continuous at c if c is a left-endpoint of I.

1.2 Trigonometric Functions

Trigonometric Functions: Sine and Cosine

sin and cos are continuous everywhere.

Sine and Cosine: Important Identities

Unit Circle

$$\sin^2\theta + \cos^2\theta = 1.$$

Odd/Even Function

$$\sin(-\theta) = -\sin\theta,$$

$$\cos(-\theta) = \cos\theta.$$

Addition Formula

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$

Other Trigonometric Functions: Identities Continuity

The remaining trigonometric functions

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}$$

are all continuous where defined.

Important Identities

$$\tan^2 x + 1 = \sec^2 x, \quad \cot^2 x + 1 = \csc^2 x.$$

Other Trigonometric Functions: Graphs

2 Section 2.5 The Pinching Theorem; Trigonometric Limits

2.1 The Pinching Theorem

The Pinching Theorem

Theorem 8. Let p > 0. Suppose that, for all x such that 0 < |x - c| < p

$$\begin{split} h(x) &\leq f(x) \leq g(x). \\ If & & \lim_{x \to c} h(x) = L \quad and \quad \lim_{x \to c} g(x) = L. \\ then & & \lim_{x \to c} f(x) = L. \end{split}$$

The Pinching Theorem: Continuity of Sine and Cosine Theorem 9.

$$\lim_{x \to 0} \sin x = 0, \quad \lim_{x \to 0} \cos x = 1,$$
$$\lim_{x \to c} \sin x = \sin c, \quad \lim_{x \to c} \cos x = \cos c.$$

 $0 < |\sin x| < |x|.$

The Pinching Theorem: Trigonometric Limits Theorem 10.

Proof. Use Geometric argument to get

$$\cos x < \frac{\sin x}{x} < 1,$$

then apply the pinching theorem.

3 Section 2.6 Two Basic Properties of Continuous Functions

3.1 The Intermediate-Value Theorem

The Intermediate-Value Theorem

Theorem 11. If f is continuous on [a,b] and K is any number between f(a) and f(b), then there is at least one number c in the interval (a,b) such that f(c) = K.

The Intermediate-Value Theorem: Roots of Equation Theorem 12. If f is continuous on [a, b] and

 $f(a) < 0 < f(b), \quad or \quad f(b) < 0 < f(a),$

then the equation f(x) = 0 has at least a root in (a, b).

3.2 The Extreme-Value Theorem

The Extreme-Value Theorem

Theorem 13. A function f continuous on a bounded closed [a, b] takes on both a maximum value M and a minimum value m.

The Extreme-Value Theorem: Bounded Closed Intervals

Theorem 14. Continuous functions map bounded closed intervals [a, b] onto bounded closed intervals [m, M].

 $f: [a, b] \rightarrow [m, M]$