Lecture 4Section 2.5 The Pinching Theorem Section 2.6 Two Basic Properties of Continuity Jiwen He

1 Review

1.1 Continuity

Homework and Quizzes

Homework 1 \& 2

- Homework 1 is due September 4th in lab.
- Homework 2 is due September 9th in lab.

Quizzes 1, $2 \& 3$

- Quizzes 1, 2 and 3 are available on CourseWare!
- Quizzes 1 and 2 are due on this Friday!

Daily Grades

- Daily grades will be given in lecture beginning next Tuesday.
- The daily grades form is posted on the course homepage. You must print out this form and BRING it to class every day.
- Questions will be asked in lecture at random times.
- You will mark your answers on the daily grades form and drop the form in a box at the end of class.

Weekly Written Quizzes in Lab

- Quizzes will be given every week on Thursday in lab beginning the next week.
- The weekly written quizzes form is posted on the course homepage. You must print out this form and BRING it to class every Thursday.

Definition of Continuity at a Point
Definition 1. Let f be a function defined on an open interval centered at c. We say that f is continuous at c if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Remark

f is continuous at c if

1. f is defined at c,
2. $\lim _{x \rightarrow c} f(x)$ exists, and
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Three Types of "Simple" Discontinuity
"Removable" Discontinuity

[^0]
"Infinite" Discontinuity

Example

At which points is f discontinuous? And what type of discontinuity does f have?

Continuity Properties of Elementary Functions

Theorem 2. - The absolute function $f(x)=|x|$ is continuous everywhere.

- The square root function $f(x)=\sqrt{x}$ is continuous at any positive number.
- Polynomials are continuous everywhere.
- Rational Functions are continuous everywhere defined.

Continuity Properties of Sums, Products and Quotients

Theorem 3. If f and g are continuous at c, then

1. $f+g$ and $f-g$ are continuous at c.
2. $k f$ is continuous at c for each real k.
3. $f \cdot g$ is continuous at c.
4. f / g is continuous at c provided $g(c) \neq 0$.

Continuity Properties of Compositions

Theorem 4. If g is continuous at c and f is continuous at $g(c)$, then the composition $f \circ g$ is continuous at c.
Examples 5. - $F(x)=\sqrt{\frac{x^{2}+1}{x-3}}$ is continuous wherever it is defined, i.e., at any number $c>3$. Note that $F=f \circ g$ where $f(x)=\sqrt{x}$ and $g(x)=\frac{x^{2}+1}{x-3}$.

One Sided Continuity

Definition 6. - f is left continuous at c if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$.

- f is right continuous at c if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$.
$f(x)=\sqrt{x}$ is right-continuous at 0.

$f(x)=\sqrt{1-x}$ is left-continuous at 1.

Continuity on Intervals

Definition 7. Let I be an interval of form: $(a, b),[a, b],[a, b),(a, b],(a, \infty)$, $[a, \infty),(-\infty, b),(-\infty, b]$, or $(-\infty, \infty)$. The f is said to be continuous on I if for every number c in I,

- f is continuous at c if c is not an endpoint of I,
- f is left continuous at c if c is a right-endpoint of I,
- f is right continuous at c if c is a left-endpoint of I.

continuous on
$(-4,1) \cup(-1,3] \cup(-3,5) \cup(5,8]$.

1.2 Trigonometric Functions

Trigonometric Functions: Sine and Cosine

sin and cos are continuous everywhere.
Sine and Cosine: Immortant Identities

Unit Circle

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Odd/Even Function

$$
\begin{aligned}
& \sin (-\theta)=-\sin \theta \\
& \cos (-\theta)=\cos \theta
\end{aligned}
$$

Addition Formula

$$
\begin{aligned}
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta
\end{aligned}
$$

Qther Trigonometric Functions: Identities

The remaining trigonometric functions

$$
\tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x}
$$

are all continuous where defined.

Important Identities

$$
\tan ^{2} x+1=\sec ^{2} x, \quad \cot ^{2} x+1=\csc ^{2} x
$$

Other Trigonometric Functions: Graphs

vertical asymptotes $x=\left(n+\frac{1}{2}\right)_{\pi, n}$ an integer

$y=\sec x$
period π
vertical asymptotes $x=\left(n+\frac{1}{2}\right)_{\pi, n} n$ an integer

vertical asymptotes $x=n \pi, n$ an integer
cosecant

$y=\csc x$
period π
vertical asymptotes $x=n \pi, n$ an integer

2 Section 2.5 The Pinching Theorem; Trigonometric Limits

2.1 The Pinching Theorem

The Pinching Theorem

Theorem 8. Let $p>0$. Suppose that, for all x such that $0<|x-c|<p$

$$
h(x) \leq f(x) \leq g(x)
$$

If
then

$$
\begin{aligned}
\lim _{x \rightarrow c} h(x)= & L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L . \\
& \lim _{x \rightarrow c} f(x)=L .
\end{aligned}
$$

The Pinching Theorem: Continuity of Sine and Cosine

$$
\begin{gathered}
\lim _{x \rightarrow 0} \sin x=0, \quad \lim _{x \rightarrow 0} \cos x=1, \\
\lim _{x \rightarrow c} \sin x=\sin c, \quad \lim _{x \rightarrow c} \cos x=\cos c . \\
0<|\sin x|<|x| .
\end{gathered}
$$

Theroremching Theorem: Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 .
$$

Proof.
Use Geometric argument to get

$$
\cos x<\frac{\sin x}{x}<1
$$

then apply the pinching theorem.

3 Section 2.6 Two Basic Properties of Continuous Functions

3.1 The Intermediate-Value Theorem

The Intermediate-Value Theorem

Theorem 11. If f is continuous on $[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there is at least one number c in the interval (a, b) such that $f(c)=K$.

The Intermediate-Value Theorem: Roots of Equation
Theorem 12. If f is continuous on $[a, b]$ and

$$
f(a)<0<f(b), \quad \text { or } \quad f(b)<0<f(a)
$$

then the equation $f(x)=0$ has at least a root in (a, b).

3.2 The Extreme-Value Theorem

The Extreme-Value Theorem

Theorem 13. A function f continuous on a bounded closed $[a, b]$ takes on both a maximum value M and a minimum value m.

The Extreme-Value Theorem: Bounded Closed Intervals
Theorem 14. Continuous functions map bounded closed intervals $[a, b]$ onto bounded closed intervals $[m, M]$.

[^0]: "Jump" Discontinuity

