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Homework and Quizzes

Homework 2 & 3

Homework 2 is due today in lab.

Homework 3 is due September 16th in lab.

Online Quizzes

Quizzes 1 and 2 have expired!

Quiz 3 is posted and due on this Friday before 11:59 PM!

Quiz 4 is posted and due 9/19!
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Weekly Written Quizzes in Lab

Quizzes will be given every week on Thursday in lab beginning
THIS WEEK.

The weekly written quizzes form is posted on the course
homepage. You must print out this form and BRING it to
class every Thursday.
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Daily Grades

Daily grades start Today.

The daily grades form is posted on the course homepage. You
must print out this form and BRING it to class every day.
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Quiz 1

Quiz 1

lim
x→1

x2 − 1

x − 1
=

a. 1

b. 2

c. − 1

d. None of these
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Quiz 2

Quiz 2

Classify the discontinuity at x = 1 for

f (x) =
x2 − 1

x − 1
.

a. Jump

b. Infinite

c. Removable

d. None of these
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The Pinching Theorem

Theorem

Let p > 0. Suppose that, for all x such that 0 < |x − c | < p

h(x) ≤ f (x) ≤ g(x).

If
lim
x→c

h(x) = L and lim
x→c

g(x) = L.

then
lim
x→c

f (x) = L.
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The Pinching Theorem: Continuity of Sine and Cosine

Theorem

lim
x→0

sin x = 0, lim
x→0

cos x = 1,

lim
x→c

sin x = sin c , lim
x→c

cos x = cos c .
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The Pinching Theorem: Trigonometric Limits

Theorem

lim
x→0

sin x

x
= 1, lim

x→0

1− cos x

x
= 0.

Proof.

Use Geometric argument to get

cos x <
sin x

x
< 1,

then apply the pinching theorem.
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More Trigonometric Limits

Theorem

lim
x→0

x

sin x
= 1 ⇒ sin x ≈ x for x near 0.

Theorem

lim
x→0

1− cos x

x2
=

1

2
⇒ cos x ≈ 1− 1

2
x2 for x near 0.

Theorem

For any number α 6= 0,

lim
x→0

sin αx

αx
= 1, lim

x→0

1− cos αx

αx
= 0,

lim
x→0

αx

sin αx
= 1, lim

x→0

1− cos αx

(αx)2
=

1

2
.
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Quiz 3

Quiz 3

What day is today?

a. Monday

b. Wednesday

c. Friday

d. None of these
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The Intermediate-Value Theorem

Theorem

If f is continuous on [a, b] and K is any number between f (a) and
f (b), then there is at least one number c in the interval (a, b) such
that f (c) = K.
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The Intermediate-Value Theorem: Roots of Equation

Theorem

If f is continuous on [a, b] and

f (a) < 0 < f (b), or f (b) < 0 < f (a),

then the equation f (x) = 0 has at least a root in (a, b).
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The Intermediate-Value Theorem: Solution of Inequality

Solve the inequality
x3 − x2 − 6x > 0

Solution: (−2, 0) ∪ (3,∞).
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Solution of Inequality

Solve the inequality

(x + 3)3(2x − 1)(x − 4)2 ≤ 0

Solution: [−3, 1/2].
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The Extreme-Value Theorem

Theorem

A function f continuous on a bounded closed [a, b] takes on both a
maximum value M and a minimum value m.
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Secant Lines vs. Tangent Lines

Definition

The slope of the graph at the point (c , f (c)) is given by

lim
h→0

f (c + h)− f (c)

h
, provided the limit exists
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Derivative and Differentiation

Definition

A function f is differentiable at c if

lim
h→0

f (c + h)− f (c)

h
exists.

If this limit exists, it is called the derivative of f at c , and is
denoted by f ′(c).
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Derivative as Function

Definition

The derivative of a function f is the function f ′ with value at x
given by:

f ′(x) = lim
h→0

f (x + h)− f (x)

h
, provided the limit exists.

To differentiate a function f is to find its derivative.

Examples

f (x) = x2, f ′(x) = 2x .
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Derivative as Function: More Examples

Examples

f (x) =
√

x , f ′(x) =
1

2
√

x
.

Examples

f (x) =
1

x
, f ′(x) = − 1

x2
.
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Line Functions

For a line function f (x) = mx + b, the derivative f ′(x) = m.

Examples

f (x) = −x , f ′(x) = −1.

Examples

f (x) =

{
2, x ≤ 0,
−x + 2, x > 0.

f ′(x) =

{
0, x < 0,
−1, x > 0.
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Nondifferentiability: Discontinuity

A function f is not differentiable at c if

lim
h→0

f (c + h)− f (c)

h
does not exist.

Jump discontinuity at 0
as x → 0−, f ′(x)→∞;
as x → 0+, f ′(x)→ 0;

Infinite discontinuity at 0
as x → 0−, f ′(x)→∞;
as x → 0+, f ′(x)→∞;
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Nondifferentiability: Corner Points

A function f is not differentiable at c if

lim
h→0

f (c + h)− f (c)

h
does not exist.

Corner point at 0
as x → 0−, f ′(x)→ −1;
as x → 0+, f ′(x)→ 1;

Corner point at 1
as x → 1−, f ′(x)→ 2;
as x → 1+, f ′(x)→ 1

2 ;
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Nondifferentiability: Vertical tangents

A function f is not differentiable at c if

lim
h→0

f (c + h)− f (c)

h
does not exist.

vertical tangent at 0
as x → 0, f ′(x)→∞.

vertical tangent at 2
as x → 2, f ′(x)→ −∞.
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Nondifferentiability: Vertical Cusps

A function f is not differentiable at c if

lim
h→0

f (c + h)− f (c)

h
does not exist.

vertical cusp at 0
as x → 0−, f ′(x)→ −∞;
as x → 0+, f ′(x)→∞.

vertical cusp at 1
as x → 1−, f ′(x)→∞;
as x → 1+, f ′(x)→ +∞.
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