Lecture 5section 3.1 The Derivative

Jiwen He

1 Review

1.1 Info

Homework and Quizzes

Homework 2 \& 3

- Homework 2 is due today in lab.
- Homework 3 is due September 16th in lab.

Online Quizzes

- Quizzes 1 and 2 have expired!
- Quiz 3 is posted and due on this Friday before 11:59 PM!
- Quiz 4 is posted and due $9 / 19$!

Weekly Written Quizzes in Lab

- Quizzes will be given every week on Thursday in lab beginning THIS WEEK.
- The weekly written quizzes form is posted on the course homepage. You must print out this form and BRING it to class every Thursday.

Daily Grades

- Daily grades start Today.
- The daily grades form is posted on the course homepage. You must print out this form and BRING it to class every day.

Quiz 1
Quiz 1

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=
$$

a. 1
b. 2
c. -1
d. None of these

Quiz 2
Quiz 2
Classify the discontinuity at $x=1$ for

$$
f(x)=\frac{x^{2}-1}{x-1} .
$$

a. Jump
b. Infinite
c. Removable
d. None of these

1.2 The Pinching Theorem

The Pinching Theorem

Theorem 1. Let $p>0$. Suppose that, for all x such that $0<|x-c|<p$ $h(x) \leq f(x) \leq g(x)$.
If
then

$$
\begin{aligned}
\lim _{x \rightarrow c} h(x)= & L \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L . \\
& \lim _{x \rightarrow c} f(x)=L .
\end{aligned}
$$

Theoreminging Theorem: Continuity of Sine and Cosine

$$
\begin{gathered}
\lim _{x \rightarrow 0} \sin x=0, \quad \lim _{x \rightarrow 0} \cos x=1, \\
\lim _{x \rightarrow c} \sin x=\sin c, \quad \lim _{x \rightarrow c} \cos x=\cos c . \\
0<|\sin x|<|x| .
\end{gathered}
$$

Theorem 3ing Theorem: Trigonometric Limits

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \quad \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0 .
$$

Proof.
Use Geometric argument to get

$$
\cos x<\frac{\sin x}{x}<1
$$

then apply the pinching theorem.

中foer drisqnometric Limits

$\lim _{x \rightarrow 0} \frac{x}{\sin x}=1 \quad \Rightarrow \quad \sin x \approx x$ for x near 0 .
Theorem 5.

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\frac{1}{2} \quad \Rightarrow \quad \cos x \approx 1-\frac{1}{2} x^{2} \text { for } x \text { near } 0
$$

Theorem 6. For any number $\alpha \neq 0$,

$$
\begin{array}{ll}
\lim _{x \rightarrow 0} \frac{\sin \alpha x}{\alpha x}=1, & \lim _{x \rightarrow 0} \frac{1-\cos \alpha x}{\alpha x}=0 \\
\lim _{x \rightarrow 0} \frac{\alpha x}{\sin \alpha x}=1, & \lim _{x \rightarrow 0} \frac{1-\cos \alpha x}{(\alpha x)^{2}}=\frac{1}{2}
\end{array}
$$

Quiz 3
Quiz 3
What day is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

1.3 The Intermediate-Value Theorem

The Intermediate-Value Theorem
Theorem 7. If f is continuous on $[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there is at least one number c in the interval (a, b) such that $f(c)=K$.

The Intermediate-Value Theorem: Roots of Equation
Theorem 8. If f is continuous on $[a, b]$ and

$$
f(a)<0<f(b), \quad \text { or } \quad f(b)<0<f(a)
$$

then the equation $f(x)=0$ has at least a root in (a, b).

The Intermediate-Value Theorem: Solution of Inequality
Solve the inequality

$$
x^{3}-x^{2}-6 x>0
$$

Solution: $(-2,0) \cup(3, \infty)$.
Solution of Inequality
Solve the inequality

$$
(x+3)^{3}(2 x-1)(x-4)^{2} \leq 0
$$

Solution: $[-3,1 / 2]$.

1.4 The Extreme-Value Theorem

The Extreme-Value Theorem
Theorem 9. A function f continuous on a bounded closed $[a, b]$ takes on both a maximum value M and a minimum value m.

2 Section 3.1 The Derivative

2.1 The Derivative

Secant Lines vs. Tangent Lines

Definition 10. The slope of the graph at the point $(c, f(c))$ is given by $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}, \quad$ provided the limit exists

Derivative and Differentiation

Definition 11. A function f is differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad \text { exists. }
$$

If this limit exists, it is called the derivative of f at c, and is denoted by $f^{\prime}(c)$.

2.2 Derivative as Function

Derivative as Function
Definition 12. The derivative of a function f is the function f^{\prime} with value at x given by:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}, \quad \text { provided the limit exists. }
$$

To differentiate a function f is to find its derivative.

Examples 13.

$$
f(x)=x^{2}, \quad f^{\prime}(x)=2 x
$$

Perinative as Function: More Examples

$$
f(x)=\sqrt{x}, \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x}} .
$$

square root function

Examples 15 .

$$
f(x)=\frac{1}{x}, \quad f^{\prime}(x)=-\frac{1}{x^{2}} .
$$

$$
y=\frac{1}{x}
$$

Line Functions
For a line function $f(x)=m x+b$, the derivative $f^{\prime}(x)=m$.
Examples 16.

$$
f(x)=-x, \quad f^{\prime}(x)=-1
$$

Examples 17.

$$
f(x)=\left\{\begin{array}{ll}
2, & x \leq 0, \\
-x+2, & x>0
\end{array} \quad f^{\prime}(x)= \begin{cases}0, & x<0 \\
-1, & x>0\end{cases}\right.
$$

2.3 Nondifferentiability

Nondifferentiability: Discontinuity
A function f is not differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad \text { does not exist. }
$$

Jump discontinuity at 0 as $x \rightarrow 0^{-}, f^{\prime}(x) \rightarrow \infty ;$ as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow 0$;

Infinite discontinuity at 0 as $x \rightarrow 0^{-}, f^{\prime}(x) \rightarrow \infty$; as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow \infty$;

Nondifferentiability: Corner Points

A function f is not differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad \text { does not exist. }
$$

Corner point at 0 as $x \rightarrow 0^{-}, f^{\prime}(x) \rightarrow-1$; as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow 1$;

Corner point at 1 as $x \rightarrow 1^{-}, f^{\prime}(x) \rightarrow 2 ;$ as $x \rightarrow 1^{+}, f^{\prime}(x) \rightarrow \frac{1}{2}$;

Nondifferentiability: Vertical tangents
A function f is not differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad \text { does not exist. }
$$

vertical tangent at 0 as $x \rightarrow 0, f^{\prime}(x) \rightarrow \infty$.

$$
f(x)=x^{1 / 3}
$$

vertical tangent at 2 as $x \rightarrow 2, f^{\prime}(x) \rightarrow-\infty$.

$$
g(x)=(2-x)^{1 / 5}
$$

Nondifferentiability: Vertical Cusps

A function f is not differentiable at c if

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \quad \text { does not exist. }
$$

vertical cusp at 0 as $x \rightarrow 0^{-}, f^{\prime}(x) \rightarrow-\infty ;$ as $x \rightarrow 0^{+}, f^{\prime}(x) \rightarrow \infty$.

vertical cusp at 1 as $x \rightarrow 1^{-}, f^{\prime}(x) \rightarrow \infty ;$ as $x \rightarrow 1^{+}, f^{\prime}(x) \rightarrow+\infty$.

$$
g(x)=2-(x-1)^{2 / 5}
$$

