Lecture 10

Section 3.9 Differentials; Newton Approximation Section 4.1 Mean-Value Theorem

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/Math1431

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 9

October 2, 2008

1 / 13

- Test 1 updated due to ike.
- October 7-9 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Online Quizzes

- Online Quizzes are available on CourseWare.
- The due dates for Quizzes have been extended.

Review for Test 1

- Review for Test 1 by by Prof. Morgan.
- Tonight 8:00 10:00pm in 100 SEC

Quiz 1

Quiz 1			
		$\lim_{x \to 0} \frac{\sin(7x)}{\sin(5x)}$	
	a.	1	
	b.	1/3	
	c.	7/5	
	d.	2	
	e.	None of these	Л
			T

Jiwen He, University of Houston

October 2, 2008 5 /

4

<ロ> (日) (日) (日) (日) (日)

Quiz 2

Quiz 2

Where is
$$f(x) = \frac{x-1}{x^2-1}$$
 continuous?

- everywhere a.
- b. x = 1, -1
- c. *x* = 1
- d. everywhere except x = -1
- None of these e.

-2

イロト イポト イヨト イヨト

Quiz 3

Quiz 3

Find the slope of the tangent line to the graph of $f(x) = x^2 + 3x$ at x = 1.

		11
e.	None of these) / - 1
d.	7	
С.	6	
b.	5	
a.	4	

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Differentials

• increment:
$$\Delta f = f(x+h) - f(x)$$

• differential: df = f'(x)h

$$\Delta f \approx df$$

in the sense that $rac{\Delta f - df}{h}$ tends to 0 as $h
ightarrow 0.$

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 9

October 2, 2008 8

Newton-Raphson Approximation

Newton Method

Let the number c be a solution (root) of an equation f(x) = 0. The Newton-Raphson method

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

generates a sequence of approximations $x_1, x_2, \dots, x_n, \dots$ that will "converge" to the root c

Jiwen He, University of Houston

October 2, 2008

眀

Review Section 3.9 Section 4.1

ifferentials Newton Approximation

Convexity Conditions for the Convergence

looping or divergent

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture

Example: Estimate $\sqrt{3}$

n	X _n	$x_{n+1} = \frac{x_n^2 + 3}{2x_n}$
1	2	1.75000
2	1.75000	1.73214
3	1.73214	1.73205

The number $\sqrt{3}$ is a root of the equation $x^2 - 3 = 0$. Estimate $\sqrt{3}$ by applying the Newton method to the function $f(x) = x^2 - 3$ starting at $x_1 = 2$:

$$x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n} = \frac{x_n^2 + 3}{2x_n}$$

Jiwen He, University of Houston

tober 2, 2008 11

The Mean-Value Theorem

Theorem

If f is differentiable on the open interval (a, b) and continuous on the closed interval [a, b], then there is at least one number c in (a, b) for which

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

or equivalently

$$f(b)-f(a)=f'(c)(b-a).$$

Jiwen He, University of Houston

2 / 13

Rolle's Theorem

Theorem

Let f be differentiable on the open interval (a, b) and continuous on the closed interval [a, b]. If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which

$$f'(c)=0.$$

