Lecture 10Section 3.9 Differentials; Newton Approximation Section 4.1 Mean-Value Theorem

Jiwen He

1 Review

1.1 Info

Test 1

- Test 1 updated due to ike.
- October 7-9 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Online Quizzes

- Online Quizzes are available on CourseWare.
- The due dates for Quizzes have been extended.

Review for Test 1

- Review for Test 1 by by Prof. Morgan.
- Tonight 8:00 10:00pm in 100 SEC

Quiz 1

Quiz 1

 $\lim_{x \to 0} \frac{\sin(7x)}{\sin(5x)}$

a. 1
b. 1/3
c. 7/5
d. 2

e. None of these

Quiz 2

Quiz 2 Where is $f(x) = \frac{x-1}{x^2-1}$ continuous? a. everywhere b. x = 1, -1c. x = 1d. everywhere except x = -1e. None of these

Quiz 3

Quiz 3

Find the slope of the tangent line to the graph of $f(x) = x^2 + 3x$ at x = 1.

a. 4
b. 5
c. 6
d. 7
e. None of these

2 Section 3.9 Differentials; Newton Approximation

2.1 Differentials

Differentials

- increment: $\Delta f = f(x+h) f(x)$
- differential: df = f'(x)h

 $\Delta f \approx df$

in the sense that $\frac{\Delta f - df}{h}$ tends to 0 as $h \to 0$.

2.2 Newton Approximation

Newton-Raphson Approximation

Newton Method

Let the number c be a solution (root) of an equation f(x) = 0. The Newton-Raphson method f(x)

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

generates a sequence of approximations $x_1, x_2, \dots, x_n, \dots$ that will "converge" to the root c

Example: Estimate $\sqrt{3}$

п	X_n	$x_{n+1} = \frac{x_n^2 + 3}{2x_n}$
1	2	1.75000
2	1.75000	1.73214
3	1.73214	1.73205

The number $\sqrt{3}$ is a root of the equation $x^2 - 3 = 0$. Estimate $\sqrt{3}$ by applying the Newton method to the function $f(x) = x^2 - 3$ starting at $x_1 = 2$:

$$x_{n+1} = x_n - \frac{x_n^2 - 3}{2x_n} = \frac{x_n^2 + 3}{2x_n}.$$

3 Section 4.1 The Mean-Value Theorem

3.1 The Mean-Value Theorem

The Mean-Value Theorem

Theorem 1. If f is differentiable on the open interval (a, b) and continuous on the closed interval [a, b], then there is at least one number c in (a, b) for which

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

or equivalently

$$f(b) - f(a) = f'(c)(b - a).$$

3.2 Rolle's Theorem

Rolle's Theorem

Theorem 2. Let f be differentiable on the open interval (a, b) and continuous on the closed interval [a, b]. If f(a) = f(b) = 0, then there is at least one number c in (a, b) at which

f'(c) = 0.