Lecture 10section 3.9 Differentials; Newton Approximation

Section 4.1 Mean-Value Theorem

Jiwen He

1 Review

1.1 Info

Test 1

- Test 1 - updated due to ike.
- October 7-9 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Online Quizzes

- Online Quizzes are available on CourseWare.
- The due dates for Quizzes have been extended.

Review for Test 1

- Review for Test 1 by by Prof. Morgan.
- Tonight 8:00-10:00pm in 100 SEC

Quiz 1
Quiz 1

$$
\lim _{x \rightarrow 0} \frac{\sin (7 x)}{\sin (5 x)}
$$

a. 1
b. $1 / 3$
c. $7 / 5$
d. 2
e. None of these

Quiz 2
Quiz 2
Where is $f(x)=\frac{x-1}{x^{2}-1}$ continuous?
a. everywhere
b. $\quad x=1,-1$
c. $\quad x=1$
d. everywhere except $x=-1$
e. None of these

Quiz 3

Quiz 3
Find the slope of the tangent line to the graph of $f(x)=x^{2}+3 x$ at $x=1$.
a. 4
b. 5
c. 6
d. 7
e. None of these

2 Section 3.9 Differentials; Newton Approximation

2.1 Differentials

Differentials

- increment: $\Delta f=f(x+h)-f(x)$
- differential: $d f=f^{\prime}(x) h$

$$
\Delta f \approx d f
$$

in the sense that $\frac{\Delta f-d f}{h}$ tends to 0 as $h \rightarrow 0$.

2.2 Newton Approximation

Newton-Raphson Approximation

Newton Method

Let the number c be a solution (root) of an equation $f(x)=0$. The NewtonRaphson method

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

generates a sequence of approximations $x_{1}, x_{2}, \cdots, x_{n}, \cdots$ that will "converge" to the root c

Convexity Conditions for the Convergence looping or divergent

$$
f(x) f^{\prime \prime}(x)>0
$$

Example: Estimate $\sqrt{3}$

n	x_{n}	$x_{n+1}=\frac{x_{n}^{2}+3}{2 x_{n}}$
1	2	1.75000
2	1.75000	1.73214
3	1.73214	1.73205

The number $\sqrt{3}$ is a root of the equation $x^{2}-3=0$. Estimate $\sqrt{3}$ by applying the Newton method to the function $f(x)=x^{2}-3$ starting at $x_{1}=2$:

$$
x_{n+1}=x_{n}-\frac{x_{n}^{2}-3}{2 x_{n}}=\frac{x_{n}^{2}+3}{2 x_{n}} .
$$

3 Section 4.1 The Mean-Value Theorem

3.1 The Mean-Value Theorem

The Mean-Value Theorem

Theorem 1. If f is differentiable on the open interval (a, b) and continuous on the closed interval $[a, b]$, then there is at least one number c in (a, b) for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or equivalently

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

3.2 Rolle's Theorem

Rolle's Theorem

Theorem 2. Let f be differentiable on the open interval (a, b) and continuous on the closed interval $[a, b]$. If $f(a)=f(b)=0$, then there is at least one number c in (a, b) at which

$$
f^{\prime}(c)=0
$$

