Lecture 11

Section 4.1 Mean-Value Theorem Section 4.2 Increasing and Decreasing Functions

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Test 1

- Test 1 - updated due to ike.
- October 7-9 in CASA

Quiz 1

Quiz 1

Use 1 iteration of Newton's method to approx. a solution to

$$
x^{3}-4 x+1=0
$$

from a guess of $x_{0}=2$.
a. $15 / 8$
b. $17 / 8$
c. $33 / 16$
d. None of these

The Mean-Value Theorem

Theorem

If f is differentiable on the open interval (a, b) and continuous on the closed interval $[a, b]$, then there is at least one number c in (a, b) for which

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

or equivalently

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Rolle's Theorem

Theorem

Let f be differentiable on the open interval (a, b) and continuous on the closed interval $[a, b]$. If $f(a)=f(b)=0$, then there is at least one number c in (a, b) at which

$$
f^{\prime}(c)=0 .
$$

Increasing and Decreasing Functions

Definition

- A function f is increasing on an interval / if

$$
f(a)<f(b), \quad \forall a, b \in I \text { with } a<b .
$$

- A function f is decreasing on an interval / if

$$
f(a)>f(b), \quad \forall a, b \in I \text { with } a<b
$$

Sign of Derivative

Theorem

- A function f is increasing on an interval I if
- f is continuous and
- $f^{\prime}(x)>0$ at all but finitely many values in 1 .
- A function f is decreasing on an interval I if
- f is continuous and
- $f^{\prime}(x)<0$ at all but finitely many values in 1 .

Example

$$
\begin{aligned}
& f(x)=x^{2}, \\
& f^{\prime}(x)=2 x \begin{cases}<0 & x<0 \\
>0, & x>0\end{cases}
\end{aligned}
$$

- f is continuous everywhere.
- f is decreasing on $(-\infty, 0]$, increasing on $[0, \infty)$.

Example

$$
\begin{aligned}
& f(x)= \begin{cases}1, & x<0 \\
x, & x \geq 0\end{cases} \\
& f^{\prime}(x)= \begin{cases}0, & x<0 \\
1, & x>0\end{cases}
\end{aligned}
$$

- f has a discontinuity at $x=0$.
- f is constant on $(-\infty, 0)$, increasing on $[0, \infty)$.

Example

$$
\begin{aligned}
& f(x)=x^{3} \\
& f^{\prime}(x)=3 x^{2}>0
\end{aligned}
$$

- f is continuous everywhere.
- f is everywhere increasing.

Example

Dirichlet function

$$
f(x)= \begin{cases}1, & \times \text { rational } \\ 0, & \times \text { irrational }\end{cases}
$$

- f is discontinuous everywhere.
- there is no interval where f is increasing or decreasing.

Example

$$
\begin{aligned}
& f(x)=\sqrt{1-x^{2}}, \\
& f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}} \begin{cases}>0 & -1<x<0 \\
<0, & 0<x<1\end{cases}
\end{aligned}
$$

- f is continuous on $[-1,1]$.
- f is increasing on $[-1,0]$, decreasing on $[0,1]$.

Example

$$
\begin{aligned}
& f(x)=\frac{1}{x}, \\
& f^{\prime}(x)=-\frac{1}{x^{2}}<0
\end{aligned}
$$

- f is discontinuous at $x=0$.
- f is decreasing on $(-\infty, 0)$ and on $(0, \infty)$.

Example

Example

$$
\begin{aligned}
& f(x)=x-2 \sin x, \quad 0 \leq x \leq 2 \pi, \\
& f^{\prime}(x)=1-2 \cos x, \quad 0 \leq x \leq 2 \pi . \\
& f^{\prime}(x)=0 \text { at } x=\pi / 3,5 \pi / 3 .
\end{aligned}
$$

- f is continuous on $[0,2 \pi]$.
- f is decreasing on $[0, \pi / 3]$, increasing on $[\pi / 3,5 \pi / 3]$, and decreasing on $[5 \pi / 3,2 \pi]$.

Example

$$
f(x)= \begin{cases}x^{3}, & x<1 \\ \frac{1}{2} x+2, & x \geq 1\end{cases}
$$

$$
f^{\prime}(x)= \begin{cases}3 x^{2}, & x<1 \\ \frac{1}{2}, & x>1\end{cases}
$$

- f has a discontinuity at $x=1$.
- f is increasing on $(-\infty, 1)$ and on $[1, \infty)$.
- Note that f is increasing on $(-\infty, \infty)$.

Example

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{1}{2} x+2, & x<1 \\
x^{3}, & x \geq 1\end{cases} \\
& f^{\prime}(x)= \begin{cases}\frac{1}{2}, & x<1 \\
3 x^{2}, & x>1\end{cases}
\end{aligned}
$$

- f has a discontinuity at $x=1$.
- f is increasing on $(-\infty, 1)$ and on $[1, \infty)$.
- Note that f is NOT increasing on $(-\infty, \infty)$.

Equality of Derivatives

Theorem

$$
f^{\prime}(x)=g^{\prime}(x), \quad \forall x \in I
$$

if and only if

$$
f(x)=g(x)+C, \quad \forall x \in I .
$$

with C a constant .

