Lecture 14Section 4.6 Concavity and Points of Inflection

Jiwen He

Test 1

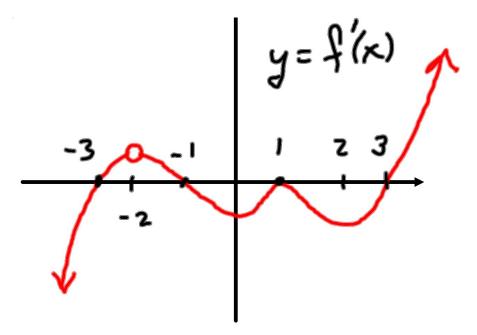
- The written questions on Test 1 are graded and appear as a separate column in your CourseWare gradebook.
- You have to add the two columns "Test 1" and "FR1" to get your total score on the exam.
- The average in this class was 65.5!!! (Others 77.63, 75.01, 70.95)

Grade Information

- $\bullet~90\%$ and above A
- $\bullet\,$ at least 80% and below 90%- B
- $\bullet\,$ at least 70% and below 80% C
- $\bullet\,$ at least 60% and below 70% D
- $\bullet\,$ below 60% F

Grade Information

- 300 points determined by exams 1, 2 and 3
- 100 points determined by lab work, written quizzes, homework, daily grades and online quizzes.
- 200 points determined by the final exam
- 600 points total

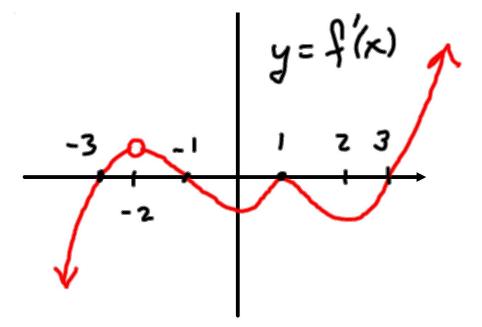

Weekly Online Quizzes

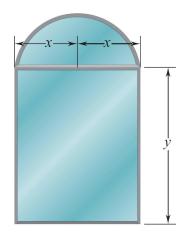
- Online quizzes are given most weeks.
- You can attempt these quizzes as many times as you like until they expire.
- The highest grade will be used for your score.
- If you fail to reach 70% during three weeks of the semester, I have the *option to drop you from the course!!!*.

Quiz 1

Assume the domain of f is all real numbers. The graph of f'(x) is shown below. Classify the critical value at 2 or state that the value is not a critical value.

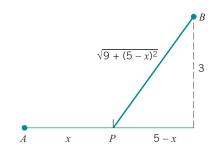
- a. local maximum
- b. local minimum
- c. neither
- d. not a critical value
- e. None of these



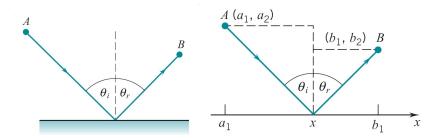

Assume the domain of f is all real numbers. The graph of f'(x) is shown below. Classify the critical value at 3 or state that the value is not a critical

value.

- a. local maximum
- b. local minimum
- c. neither
- d. not a critical value
- e. None of these



1 Section 4.5 Some Max-Min Problems (Cont.) Example 3

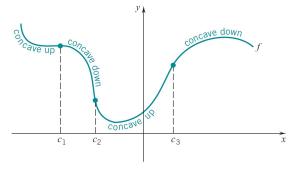

Example 3 A window in the shape of a rectangle capped by a semicircle is to have perimeter p. Choose the radius of the semicircular part so that the window admits the greatest amount of light.

Example 4

Example 4 A state highway department plans to construct a new road between towns A and B. Town A lies on an abandoned road that runs east-west. Town B is 3 miles north of the point on that road that is 5 miles east of A. The engineering division proposes that the road be constructed by restoring a section of the old road from A up to a point P and joining it to a new road that connects P and B. If the cost of restoring the old road is \$200,000 per mile and the cost of the new road is \$400,000 per mile, how much of the old road should be restored in order to minimize the department's costs?

Example 5

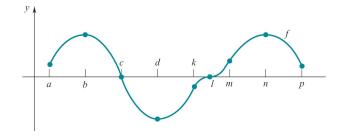
Example 5 (*The angle of incidence equals the angle of reflection.*) Figure 4.5.6 depicts light from a point *A* reflected to a point *B* by a mirror. Two angles have been marked: the *angle of incidence*, θ_i , and the *angle of reflection*, θ_r . Experiment shows that $\theta_i = \theta_r$. Derive this result by postulating that the light that travels from *A* to the mirror and then to *B* follows the shortest possible path.[†]


Example 6

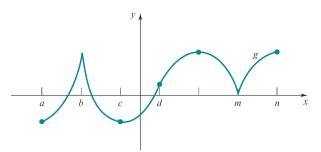
Example 6 A manufacturing plant has a capacity of 25 articles per week. Experience has shown that *n* articles per week can be sold at a price of *p* dollars each where p = 110 - 2n and the cost of producing *n* articles is $600 + 10n + n^2$ dollars. How many articles should be made each week to give the largest profit?

n	Р	n	Р	n	Р	
8	8	14	212	20	200	
9	57	15	225	21	177	
10	100	16	232	22	148	
11	137	17	233	23	113	
12	168	18	228	24	72	
13	193	19	217	25	25	

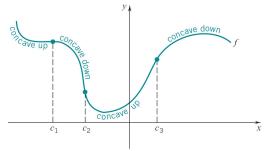
2 Section 4.6 Concavity and Points of Inflection


Concavity and Points of Inflection

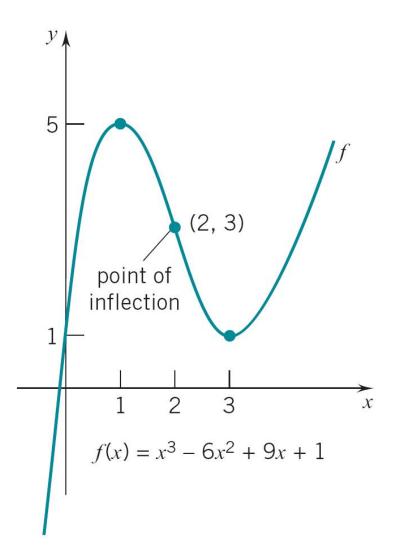
Definition 1. • The graph of f is *concave up* on I if f' *increases* on I.


- The graph of f is *concave down* on I if f' decreases on I.
- Ponts that join arcs of opposite concavity are points of inflection.

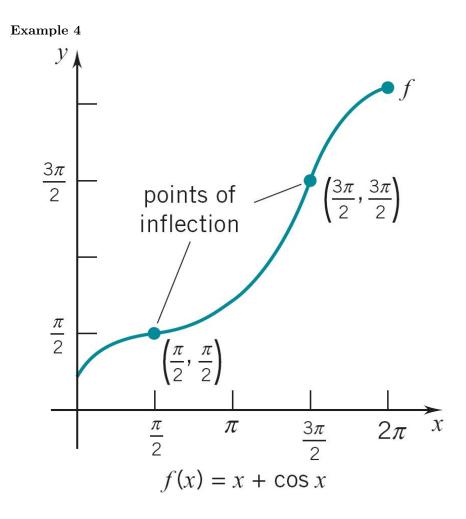
Example 1


- Determine the intervals on which f increases and the intervals on which f decreases.
- Determine the intervals on which the graph of f is concave up and the intervals on which the graph of f is concave down.
- Give the *x*-coordinates of the points of inflection.

Example 2

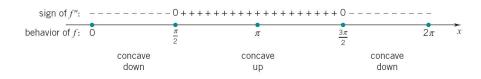

- Determine the intervals on which f increases and the intervals on which f decreases.
- Determine the intervals on which the graph of f is concave up and the intervals on which the graph of f is concave down.
- Give the *x*-coordinates of the points of inflection.

Second-Derivative Test



- **Theorem 2.** If f''(x) > 0 for all x in I, then f' increases on I, and the graph of f is concave up.
 - If f''(x) < 0 for all x in I, then f' decreases on I, and the graph of f is concave down.
 - If the point (c, f(c)) is a point of inflection, then either f''(c) = 0 or f'(c) does not exist.

Example 3



• Determine concavity and find the points of inflection of the graph of $f(x) = x^3 - 6x^2 + 9x + 1$.

• Determine concavity and find the points of inflection of the graph of $f(x) = x + \cos x$, $x \in [0, 2\pi]$.

 $f'(x) = 1 - \sin x, \ f''(x) = -\cos x.$

