Lecture 15Section 4.7 Vertical and Horizontal Asymptotes; Vertical Tangents and Cusps

Jiwen He

Test 2

- Test 2: November 1-4 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Review for Test 2

- Review for Test 2 by the College Success Program.
- Friday, October $242: 30-3: 30 \mathrm{pm}$ in the basement of the library by the C-site.

Grade Information

- 300 points determined by exams 1, 2 and 3
- 100 points determined by lab work, written quizzes, homework, daily grades and online quizzes.
- 200 points determined by the final exam
- 600 points total

More Grade Information

- 90% and above - A
- at least 80% and below 90% - B
- at least 70% and below 80% - C
- at least 60% and below $70 \%-\mathrm{D}$
- below $60 \%-\mathrm{F}$

Online Quizzes

- Online Quizzes are available on CourseWare.
- If you fail to reach 70% during three weeks of the semester, I have the option to drop you from the course!!!!

Dropping Course

- Tuesday, November 4, 2008
- Last day to drop a course or withdraw with a "W" (must be by 5 pm)

Quiz 1
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Give the number of critical values of f.
a. 2
b. 3
c. 4
d. 5

Quiz 2
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Give the number of intervals of increase of f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 3
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown
below. Give the number of intervals of decrease of f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 4
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Classify the smallest critical number of f
a. local maximum
b. local minimum
c. neither

Quiz 5
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Classify the critical number of f between 0 and 2 .
a. local maximum
b. local minimum
c. neither

Quiz 6
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Give the number of intervals where the graph of f is concave up.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 7

Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Give the number of intervals where the graph of f is concave down.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 8
Assume the domain of f is all real numbers. The graph of $f^{\prime}(x)$ is shown below. Give the number of the points of inflection of the graph of f.
a. 1
b. 2
c. 3
d. 4
e. None of these

1 Section 4.7 Asymptotes

1.1 Vertical Asymptotes

Vertical Aymptotes: Example 1

The line $x=c$ is a vertical asymptote for the function f :

$$
f(x) \rightarrow \infty \quad \text { as } x \rightarrow c
$$

Vertical Aymptotes: Example 2

The line $x=c$ is a vertical asymptote for the function f :

$$
f(x) \rightarrow-\infty \quad \text { as } x \rightarrow c
$$

Vertical Aymptotes: Example 3

The line $x=c$ is a vertical asymptote for both functions f and g :

$$
f(x) \rightarrow \infty \text { and } g(x) \rightarrow-\infty \quad \text { as } x \rightarrow c^{-}
$$

Vertical Aymptotes: Example 4

The line $x=c$ is a vertical asymptote for both functions f and g :

$$
f(x) \rightarrow \infty \text { and } g(x) \rightarrow-\infty \quad \text { as } x \rightarrow c^{+}
$$

How to locate Vertical Aymptotes

Typically, to locate the vertical asymptotes for a function f,

- find the values $x=c$ at which f is discontinuous
- and determine the behavior of f as x approaches c.

The vertical line $x=c$ is a vertical asymptote for f if any one of the following conditions holds

- $f(x) \rightarrow \infty$ or $-\infty \quad$ as $x \rightarrow c^{+}$;
- $f(x) \rightarrow \infty$ or $-\infty \quad$ as $x \rightarrow c^{-}$;
- $f(x) \rightarrow \infty$ or $-\infty \quad$ as $x \rightarrow c$.

Vertical Aymptotes: Rational Function

The line $x=4$ is a vertical asymptote for

$$
f(x)=\frac{3 x+6}{x^{2}-2 x-8}=\frac{3(x+2)}{(x+2)(x-4)} .
$$

Vertical Aymptotes: Tangent Function

The line $x= \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \cdots$, are vertical asymptotes for the tangent function.

1.2 Horizontal Asymptotes

Horizontal Aymptote: Example 1

The line $y=L$ is a horizontal asymptote for the function f :

$$
f(x) \rightarrow L \quad \text { as } x \rightarrow \infty
$$

Horizontal Aymptote: Example 2

The line $y=L$ is a horizontal asymptote for the function f :

$$
f(x) \rightarrow L \quad \text { as } x \rightarrow-\infty
$$

Aymptotes: Rational Function $f(x)=\frac{x}{x-2}$

- The line $x=2$ is a vertical asymptote.
- The line $y=1$ is a horizontal asymptote.

Behavior of Rational Function as $x \rightarrow \pm \infty$

Let

$$
R(x)=\frac{a_{n} x^{n}+\cdots+a_{1} x+a_{0}}{b_{k} x^{k}+\cdots+b_{1} x+b_{0}}
$$

be a rational function. Then

- if $n<k$,

$$
R(x) \rightarrow 0 \quad \text { as } \quad x \rightarrow \pm \infty
$$

- if $n=k$,

$$
R(x) \rightarrow \frac{a_{n}}{b_{n}} \quad \text { as } \quad x \rightarrow \pm \infty
$$

- if $n>k$,

$$
R(x) \rightarrow \pm \infty \quad \text { as } \quad x \rightarrow \pm \infty
$$

Aymptotes: Rational Function $f(x)=\frac{5-3 x^{2}}{1-x^{2}}$

- The lines $x= \pm 1$ are vertical asymptotes.
- The line $y=3$ is a horizontal asymptote.

1.3 Vertical Tangents

Vertical Tangent: Rational Power $f(x)=x^{1 / 3}$

The graph of $f(x)=x^{1 / 3}$ has a vertical tangent at the point $(0,0)$ since

$$
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \rightarrow \infty \quad \text { as } x \rightarrow 0
$$

Vertical Tangent: Rational Power $g(x)=(2-x)^{1 / 5}$

The graph of $g(x)=(2-x)^{1 / 5}$ has a vertical tangent at the point $(2,0)$ since

$$
g^{\prime}(x)=-\frac{1}{5}(2-) x^{-4 / 5} \rightarrow-\infty \quad \text { as } x \rightarrow 2
$$

1.4 Vertical Cusps

Vertical Cusp: Rational Power $f(x)=x^{2 / 3}$

The graph of $f(x)=x^{2 / 3}$ has a vertical cusp at the point $(0,0)$ since $f^{\prime}(x)=$ $\frac{2}{3} x^{-1 / 3}$ and

$$
f^{\prime}(x) \rightarrow-\infty \text { as } x \rightarrow 0^{-}, \quad \text { and } \quad f^{\prime}(x) \rightarrow \infty \text { as } x \rightarrow 0^{+}
$$

Vertical Cusp: Rational Power $g(x)=2-(x-1)^{2 / 5}$

$$
g(x)=2-(x-1)^{2 / 5}
$$

The graph of $g(x)=2-(x-1)^{2 / 5}$ has a vertical cusp at the point $(1,2)$ since $g^{\prime}(x)=-\frac{2}{5}(x-1)^{-3 / 5}$ and

$$
g^{\prime}(x) \rightarrow \infty \text { as } x \rightarrow 0^{-}, \quad \text { and } \quad g^{\prime}(x) \rightarrow-\infty \text { as } x \rightarrow 0^{+} .
$$

Example: $f(x)=\left|x^{3}-1\right|$

Is there a vertical cusp for the graph of $f(x)=\left|x^{3}-1\right|$?

Example

- Give the equations of the vertical asymptotes, if any.
- Give the equations of the horizontal asymptotes, if any.

Example

- Give the equations of the vertical asymptotes, if any.
- Give the equations of the horizontal asymptotes, if any.
- Give the number c, if any, at which the graph has a vertical cusp.

