Lecture 16

 Section 4.8 Some Curve Sketching

 Section 4.8 Some Curve Sketching}

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Test 2

- Test 2: November 1-4 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Review for Test 2

- Review for Test 2 by the College Success Program.
- Friday, October 24 2:30-3:30pm in the basement of the library by the C-site.

Help Session for Homework

- Homework Help Session by Prof. Morgan.
- Tonight 8:00-10:00pm in 100 SEC

Online Quizzes

- Online Quizzes are available on CourseWare.
- If you fail to reach 70% during three weeks of the semester, I have the option to drop you from the course!!!.

Dropping Course

- Tuesday, November 4, 2008
- Last day to drop a course or withdraw with a "W" (must be by 5 pm)

Quiz 1

The graph of $f(x)$ is shown below. Give the number of critical values of f.
a. 5
b. 7
c. 8
d. 9
e. None of these

Quiz 2

The graph of $f(x)$ is shown below. Give the number of the points of inflection of the graph of f.
a. 8
b. 10
c. 12
d. 14
e. None of these

Quiz 3

The graph of $f(x)$ is shown below. Give the number of local minima for f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 4

The graph of $f(x)$ is shown below. Give the number of local maxima for f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 5

The graph of $f^{\prime}(x)$ is shown below. Give the number of local maxima for f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 6

The graph of $f^{\prime}(x)$ is shown below. Give the number of local minima for f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 7

The graph of $f^{\prime}(x)$ is shown below. Give the number of critical numbers for f.
a. 1
b. 2
c. 3
d. 4
e. None of these

Quiz 8

The graph of $f^{\prime}(x)$ is shown below. Give the number of inflection points for f.
a. 3
b. 4
c. 5
d. 6
e. None of these

Example 1

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 1: Domain of f

(i) Determine the domain of f;
(ii) Identify endpoints;
(iii) Find the vertical asymptotes;
(iv) Determine the behavior of f as $x \rightarrow \pm \infty$;
(v) Find the horizontal asymptotes.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 2: Intercepts

(i) Determine the y-intercept of the graph:

- The y-intercept is the value of $f(0)$;
(ii) Determine the x-intercepts of the graph:
- The x-intercepts are the solutions of the equation $f(x)=0$.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 3: Symmetry and Periodicity

(i) Symmetry:
(a) If f is an even function, i.e., $f(-x)=f(x)$, then the graph is symmetric w.r.t. the y-axis;
(b) If f is an odd function, i.e., $f(-x)=-f(x)$, then the graph is symmetric w.r.t. the origin.
(ii) Periodicity:

- If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 4: First Derivative f^{\prime}

(i) Calculate f^{\prime};
(ii) Determine the critical numbers of f;
(iii) Examine the sign of f^{\prime} to determine the intervals on which f increases and the intervals on which f decreases;
(iv) Determine vertical tangents and cusps.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 5: Second Derivative $f^{\prime \prime}$

(i) Calculate $f^{\prime \prime}$;
(ii) Examine the sign of $f^{\prime \prime}$ to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
(iii) Determine the points of inflection.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 6: Preliminary sketch

Plot the points of interest:
(i) intercept points,
(ii) extreme points

- local extreme points,
- endpoint extreme points,
- absolute extreme points,
(iii) and points of inflection.

Example 1 (cont.)

Sketch the graph of $f(x)=\frac{1}{4} x^{4}-2 x^{2}+\frac{7}{4}$

Step 7: Sketch the graph

(i) Symmetry: sketch the graph for $x \geq 0$;
(ii) Connect the points of the preliminary sketch;
(iii) Make sure the curve "rises", "falls", and "bends" in the proper way;
(iv) Obtain the graph for $x \leq 0$ by a reflection in the y-axis.

Example 2

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 1: Domain of f

(i) Determine the domain of f;
(ii) Identify endpoints;
(iii) Find the vertical asymptotes;
(iv) Determine the behavior of f as $x \rightarrow \pm \infty$;
(v) Find the horizontal asymptotes.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 2: Intercepts

(i) Determine the y-intercept of the graph:

- The y-intercept is the value of $f(0)$;
(ii) Determine the x-intercepts of the graph:
- The x-intercepts are the solutions of the equation $f(x)=0$.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 3: Symmetry and Periodicity

(i) Symmetry:
(a) If f is an even function, i.e., $f(-x)=f(x)$, then the graph is symmetric w.r.t. the y-axis;
(b) If f is an odd function, i.e., $f(-x)=-f(x)$, then the graph is symmetric w.r.t. the origin.
(ii) Periodicity:

- If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$
Step 4: First Derivative f^{\prime}
(i) Calculate f^{\prime};
(ii) Determine the critical numbers of f;
(iii) Examine the sign of f^{\prime} to determine the intervals on which f increases and the intervals on which f decreases;
(iv) Determine vertical tangents and cusps.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 5: Second Derivative $f^{\prime \prime}$

(i) Calculate $f^{\prime \prime}$;
(ii) Examine the sign of $f^{\prime \prime}$ to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
(iii) Determine the points of inflection.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 6: Preliminary sketch

Plot the points of interest:
(i) intercept points,
(ii) extreme points

- local extreme points,
- endpoint extreme points,
- absolute extreme points,
(iii) and points of inflection.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^{2}-3}{x^{3}}$

Step 7: Sketch the graph

(i) Symmetry: sketch the graph for $x \geq 0$;
(ii) Connect the points of the preliminary sketch;
(iii) Make sure the curve "rises", "falls", and "bends" in the proper way;
(iv) Obtain the graph for $x \leq 0$ by symmetry w.r.t the origin.

Example 3

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 1: Domain of f

(i) Determine the domain of f;
(ii) Identify endpoints;
(iii) Find the vertical asymptotes;
(iv) Determine the behavior of f as $x \rightarrow \pm \infty$;
(v) Find the horizontal asymptotes.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 2: Intercepts

(i) Determine the y-intercept of the graph:

- The y-intercept is the value of $f(0)$;
(ii) Determine the x-intercepts of the graph:
- The x-intercepts are the solutions of the equation $f(x)=0$.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 3: Symmetry and Periodicity

(i) Symmetry:
(a) If f is an even function, i.e., $f(-x)=f(x)$, then the graph is symmetric w.r.t. the y-axis;
(b) If f is an odd function, i.e., $f(-x)=-f(x)$, then the graph is symmetric w.r.t. the origin.
(ii) Periodicity:

- If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 4: First Derivative f^{\prime}

(i) Calculate f^{\prime};
(ii) Determine the critical numbers of f;
(iii) Examine the sign of f^{\prime} to determine the intervals on which f increases and the intervals on which f decreases;
(iv) Determine vertical tangents and cusps.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 5: Second Derivative $f^{\prime \prime}$

(i) Calculate $f^{\prime \prime}$;
(ii) Examine the sign of $f^{\prime \prime}$ to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
(iii) Determine the points of inflection.

sign of $f^{\prime \prime}:$	$-----0+++++++++++++++++++++++++$ dne +++++++		
behavior of graph: concave -1	down point	up	0

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 6: Preliminary sketch

Plot the points of interest:
(i) intercept points,
(ii) extreme points

- local extreme points,
- endpoint extreme points,
- absolute extreme points,
(iii) and points of inflection.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5} x^{5 / 3}-3 x^{2 / 3}$

Step 7: Sketch the graph

(i) Neither symmetry and nor periodicity;
(ii) Connect the points of the preliminary sketch;
(iii) Make sure the curve "rises", "falls", and "bends" in the proper way.

Example 4

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$.

Step 1: Domain of f

(i) Determine the domain of f;
(ii) Identify endpoints;
(iii) Find the vertical asymptotes;
(iv) Determine the behavior of f as $x \rightarrow \pm \infty$;
(v) Find the horizontal asymptotes.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 2: Intercepts

(i) Determine the y-intercept of the graph:

- The y-intercept is the value of $f(0)$;
(ii) Determine the x-intercepts of the graph:
- The x-intercepts are the solutions of the equation $f(x)=0$.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 3: Symmetry and Periodicity

(i) Symmetry:
(a) If f is an even function, i.e., $f(-x)=f(x)$, then the graph is symmetric w.r.t. the y-axis;
(b) If f is an odd function, i.e., $f(-x)=-f(x)$, then the graph is symmetric w.r.t. the origin.
(ii) Periodicity:

- If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 4: First Derivative f^{\prime}

(i) Calculate f^{\prime};
(ii) Determine the critical numbers of f;
(iii) Examine the sign of f^{\prime} to determine the intervals on which f increases and the intervals on which f decreases;
(iv) Determine vertical tangents and cusps.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 5: Second Derivative $f^{\prime \prime}$

(i) Calculate $f^{\prime \prime}$;
(ii) Examine the sign of $f^{\prime \prime}$ to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
(iii) Determine the points of inflection.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 6: Preliminary sketch

Plot the points of interest:
(i) intercept points,
(ii) extreme points

- local extreme points,
- endpoint extreme points,
- absolute extreme points,
(iii) and points of inflection.

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 7: Sketch the graph

(i) Symmetry: sketch the graph on the interval $[-\pi, \pi]$;
(ii) Connect the points of the preliminary sketch;
(iii) Make sure the curve "rises", "falls", and "bends" in the proper way;

Example 4 (cont.)

Sketch the graph of $f(x)=\sin 2 x-2 \sin x$

Step 7: Sketch the graph

(iv) Obtain the complete graph by replicating itself on intervals of length 2π.

