Lecture 16Section 4.8 Some Curve Sketching

Jiwen He

Test $\mathbf{2}$

- Test 2: November 1-4 in CASA
- Loggin to CourseWare to reserve your time to take the exam.

Review for Test 2

- Review for Test 2 by the College Success Program.
- Friday, October 24 2:30–3:30pm in the basement of the library by the C-site.

Help Session for Homework

- Homework Help Session by Prof. Morgan.
- Tonight 8:00 10:00pm in 100 SEC

Online Quizzes

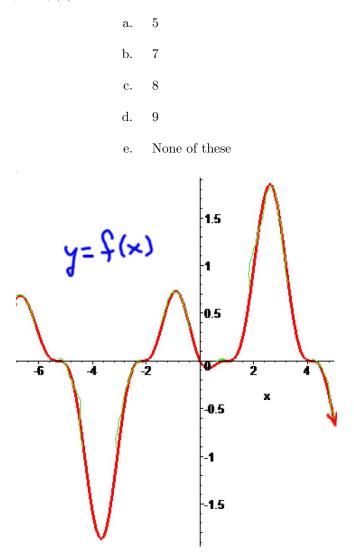
- Online Quizzes are available on CourseWare.
- If you fail to reach 70% during three weeks of the semester, I have the option to drop you from the course!!!.

Dropping Course

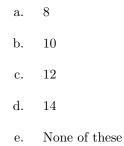
- Tuesday, November 4, 2008
- Last day to drop a course or withdraw with a "W" (must be by 5 pm)

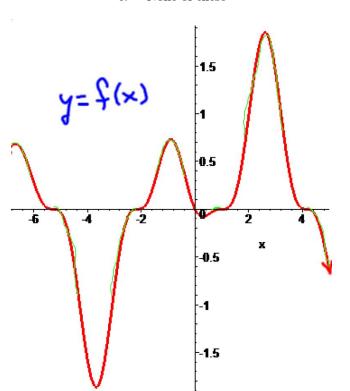
Quiz 1

The graph of f(x) is shown below. Give the number of critical values of f.



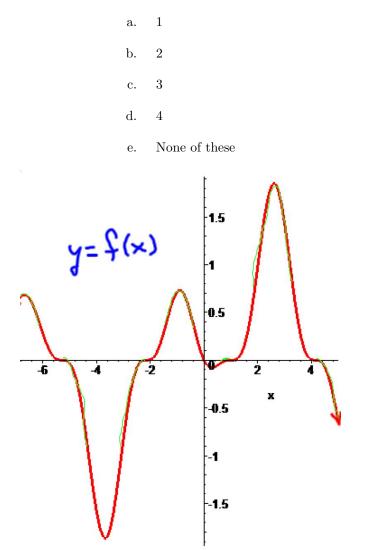
of the graph of f.





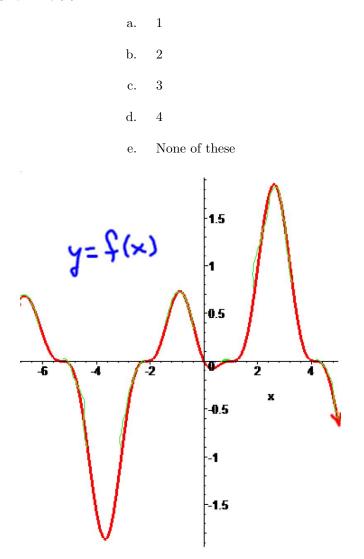
Quiz 3

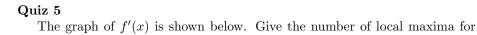
The graph of f(x) is shown below. Give the number of local minima for f.

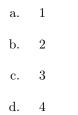


Quiz 4

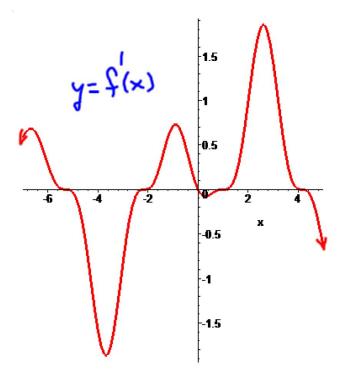
The graph of f(x) is shown below. Give the number of local maxima for f.







e. None of these

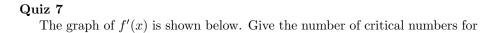


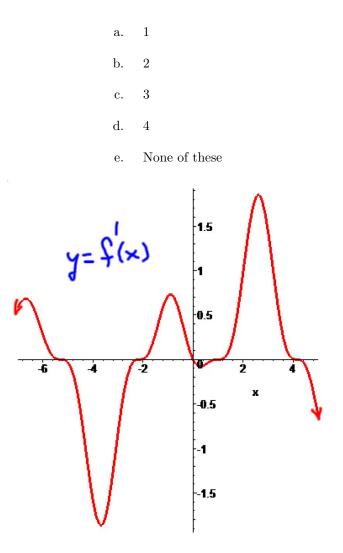
Quiz 6

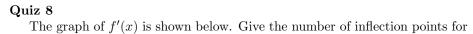
f.

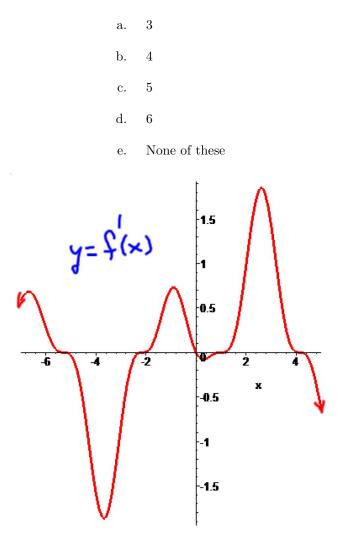
The graph of f'(x) is shown below. Give the number of local minima for f.











1 Section 4.8 Some Curve Sketching

1.1 Example 1

Example 1

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 1: Domain of f

(i) Determine the domain of f;

f.

- (ii) Identify endpoints;
- (iii) Find the vertical asymptotes;
- (iv) Determine the behavior of f as $x \to \pm \infty$;
- (v) Find the horizontal asymptotes.

Example 1 (cont.)

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 2: Intercepts

(i) Determine the *y*-intercept of the graph:

- The y-intercept is the value of f(0);

- (ii) Determine the *x*-intercepts of the graph:
 - The x-intercepts are the solutions of the equation f(x) = 0.

Example 1 (cont.)

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 3: Symmetry and Periodicity

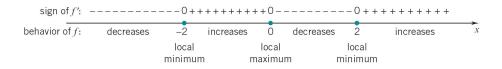
- (i) Symmetry:
 - (a) If f is an even function, i.e., f(-x) = f(x), then the graph is symmetric w.r.t. the y-axis;
 - (b) If f is an odd function, i.e., f(-x) = -f(x), then the graph is symmetric w.r.t. the origin.
- (ii) Periodicity:
 - If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 1 (cont.)

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 4: First Derivative f'

- (i) Calculate f';
- (ii) Determine the critical numbers of f;
- (iii) Examine the sign of f' to determine the intervals on which f increases and the intervals on which f decreases;
- (iv) Determine vertical tangents and cusps.

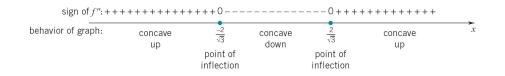


Example 1 (cont.)

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 5: Second Derivative f''

- (i) Calculate f'';
- (ii) Examine the sign of f'' to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
- (iii) Determine the points of inflection.



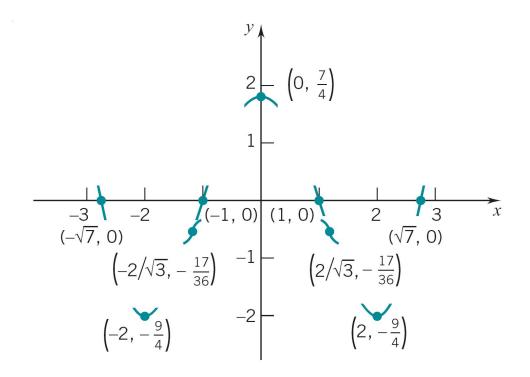
Example 1 (cont.)

Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 6: Preliminary sketch Plot the points of interest:

- (i) intercept points,
- (ii) extreme points

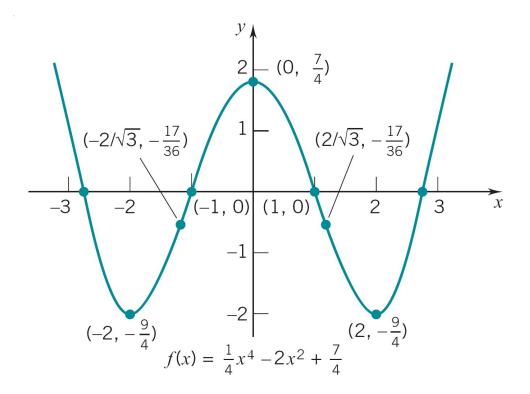
- local extreme points,
- endpoint extreme points,
- absolute extreme points,
- (iii) and points of inflection.



Example 1 (cont.) Sketch the graph of $f(x) = \frac{1}{4}x^4 - 2x^2 + \frac{7}{4}$

Step 7: Sketch the graph

- (i) Symmetry: sketch the graph for $x \ge 0$;
- (ii) Connect the points of the preliminary sketch;
- (iii) Make sure the curve "rises", "falls", and "bends" in the proper way;
- (iv) Obtain the graph for $x \leq 0$ by a reflection in the *y*-axis.



1.2 Example 2

Example 2

Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 1: Domain of f

- (i) Determine the domain of f;
- (ii) Identify endpoints;
- (iii) Find the vertical asymptotes;
- (iv) Determine the behavior of f as $x \to \pm \infty$;
- (v) Find the horizontal asymptotes.

Example 2 (cont.)

Sketch the graph of $f(x)=\frac{x^2-3}{x^3}$

Step 2: Intercepts

(i) Determine the *y*-intercept of the graph:

- The y-intercept is the value of f(0);

- (ii) Determine the *x*-intercepts of the graph:
 - The x-intercepts are the solutions of the equation f(x) = 0.

Example 2 (cont.)

Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 3: Symmetry and Periodicity

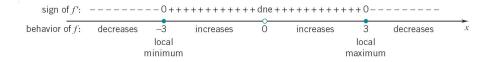
- (i) Symmetry:
 - (a) If f is an even function, i.e., f(-x) = f(x), then the graph is symmetric w.r.t. the y-axis;
 - (b) If f is an odd function, i.e., f(-x) = -f(x), then the graph is symmetric w.r.t. the origin.
- (ii) Periodicity:
 - If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 2 (cont.)

Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 4: First Derivative f'

- (i) Calculate f';
- (ii) Determine the critical numbers of f;
- (iii) Examine the sign of f' to determine the intervals on which f increases and the intervals on which f decreases;
- (iv) Determine vertical tangents and cusps.



Example 2 (cont.)

Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 5: Second Derivative f''

- (i) Calculate f'';
- (ii) Examine the sign of f'' to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
- (iii) Determine the points of inflection.

sign of f'': -----0+++++++++ dne------0+++++++ behavior of graph: concave $-3\sqrt{2}$ concave 0 concave $3\sqrt{2}$ concave xdown point of up down point of up inflection inflection

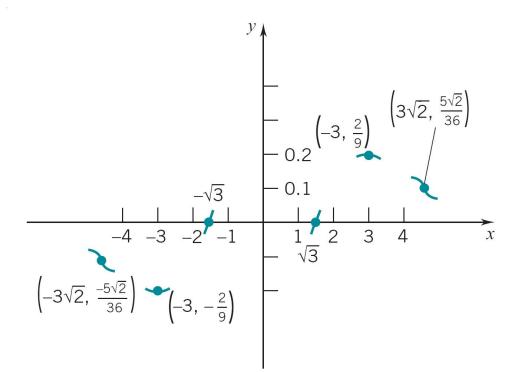
Example 2 (cont.)

Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 6: Preliminary sketch

Plot the points of interest:

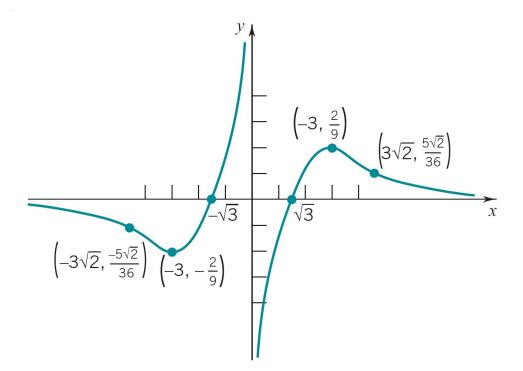
- (i) intercept points,
- (ii) extreme points
 - local extreme points,
 - endpoint extreme points,
 - absolute extreme points,
- (iii) and points of inflection.



Example 2 (cont.) Sketch the graph of $f(x) = \frac{x^2 - 3}{x^3}$

Step 7: Sketch the graph

- (i) Symmetry: sketch the graph for $x \ge 0$;
- (ii) Connect the points of the preliminary sketch;
- (iii) Make sure the curve "rises", "falls", and "bends" in the proper way;
- (iv) Obtain the graph for $x \leq 0$ by symmetry w.r.t the origin.



1.3 Example 3

Example 3

Sketch the graph of $f(x) = \frac{3}{5}x^{5/3} - 3x^{2/3}$

Step 1: Domain of f

- (i) Determine the domain of f;
- (ii) Identify endpoints;
- (iii) Find the vertical asymptotes;
- (iv) Determine the behavior of f as $x \to \pm \infty$;
- (v) Find the horizontal asymptotes.

Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5}x^{5/3}-3x^{2/3}$

Step 2: Intercepts

(i) Determine the *y*-intercept of the graph:

- The y-intercept is the value of f(0);

- (ii) Determine the *x*-intercepts of the graph:
 - The x-intercepts are the solutions of the equation f(x) = 0.

Example 3 (cont.)

Sketch the graph of $f(x) = \frac{3}{5}x^{5/3} - 3x^{2/3}$

Step 3: Symmetry and Periodicity

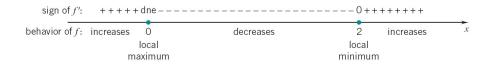
- (i) Symmetry:
 - (a) If f is an even function, i.e., f(-x) = f(x), then the graph is symmetric w.r.t. the y-axis;
 - (b) If f is an odd function, i.e., f(-x) = -f(x), then the graph is symmetric w.r.t. the origin.
- (ii) Periodicity:
 - If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 3 (cont.)

Sketch the graph of $f(x) = \frac{3}{5}x^{5/3} - 3x^{2/3}$

Step 4: First Derivative f'

- (i) Calculate f';
- (ii) Determine the critical numbers of f;
- (iii) Examine the sign of f' to determine the intervals on which f increases and the intervals on which f decreases;
- (iv) Determine vertical tangents and cusps.

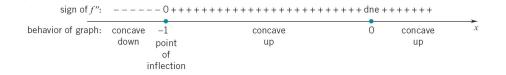


Example 3 (cont.)

Sketch the graph of $f(x)=\frac{3}{5}x^{5/3}-3x^{2/3}$

Step 5: Second Derivative f''

- (i) Calculate f'';
- (ii) Examine the sign of f'' to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
- (iii) Determine the points of inflection.



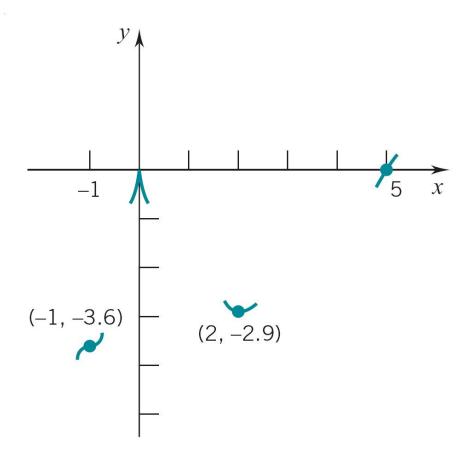
Example 3 (cont.)

Sketch the graph of $f(x) = \frac{3}{5}x^{5/3} - 3x^{2/3}$

Step 6: Preliminary sketch

Plot the points of interest:

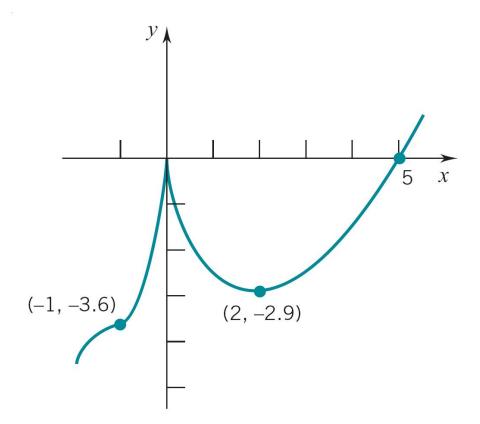
- (i) intercept points,
- (ii) extreme points
 - local extreme points,
 - endpoint extreme points,
 - absolute extreme points,
- (iii) and points of inflection.



Example 3 (cont.) Sketch the graph of $f(x) = \frac{3}{5}x^{5/3} - 3x^{2/3}$

Step 7: Sketch the graph

- (i) Neither symmetry and nor periodicity;
- (ii) Connect the points of the preliminary sketch;
- (iii) Make sure the curve "rises", "falls", and "bends" in the proper way.



1.4 Example 4

Example 4

Sketch the graph of $f(x) = \sin 2x - 2\sin x$.

Step 1: Domain of f

- (i) Determine the domain of f;
- (ii) Identify endpoints;
- (iii) Find the vertical asymptotes;
- (iv) Determine the behavior of f as $x \to \pm \infty$;
- (v) Find the horizontal asymptotes.

Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 2: Intercepts

- (i) Determine the *y*-intercept of the graph:
 - The *y*-intercept is the value of f(0);
- (ii) Determine the *x*-intercepts of the graph:
 - The x-intercepts are the solutions of the equation f(x) = 0.

Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 3: Symmetry and Periodicity

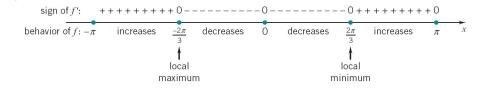
- (i) Symmetry:
 - (a) If f is an even function, i.e., f(-x) = f(x), then the graph is symmetric w.r.t. the y-axis;
 - (b) If f is an odd function, i.e., f(-x) = -f(x), then the graph is symmetric w.r.t. the origin.
- (ii) Periodicity:
 - If f is periodic with period p, then the graph replicates itself on intervals of length p.

Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 4: First Derivative f'

- (i) Calculate f';
- (ii) Determine the critical numbers of f;
- (iii) Examine the sign of f' to determine the intervals on which f increases and the intervals on which f decreases;
- (iv) Determine vertical tangents and cusps.

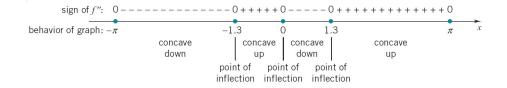


Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 5: Second Derivative f''

- (i) Calculate f'';
- (ii) Examine the sign of f'' to determine the intervals on which the graph is concave up and the intervals on which the graph is concave down;
- (iii) Determine the points of inflection.



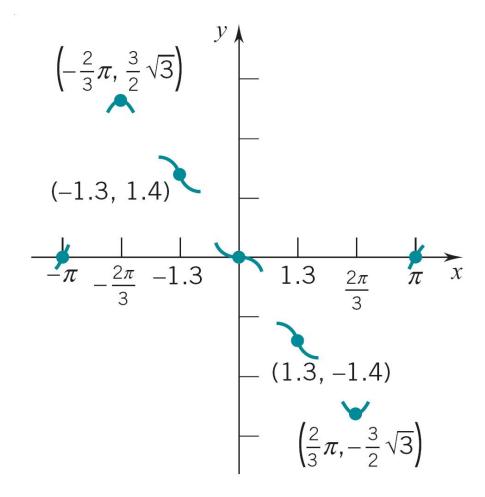
Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 6: Preliminary sketch

Plot the points of interest:

- (i) intercept points,
- (ii) extreme points
 - local extreme points,
 - endpoint extreme points,
 - absolute extreme points,
- (iii) and points of inflection.

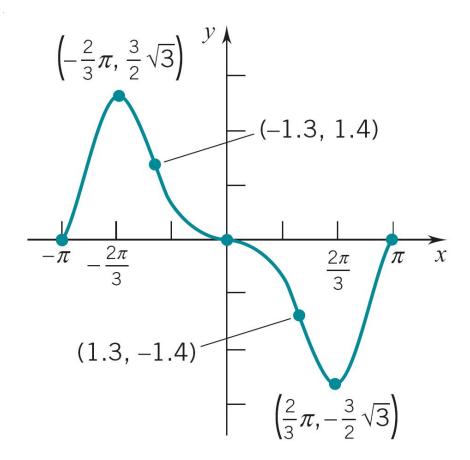


Example 4 (cont.)

Sketch the graph of $f(x) = \sin 2x - 2\sin x$

Step 7: Sketch the graph

- (i) Symmetry: sketch the graph on the interval $[-\pi, \pi]$;
- (ii) Connect the points of the preliminary sketch;
- (iii) Make sure the curve "rises", "falls", and "bends" in the proper way;



Example 4 (cont.) Sketch the graph of $f(x) = \sin 2x - 2 \sin x$

Step 7: Sketch the graph

(iv) Obtain the complete graph by replicating itself on intervals of length 2π .

