Lecture 18
 Section 5.5 Some Area Problems

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

Area below the graph of a Nonnegative f

$f(x) \geq 0 \quad$ for all x in $[a, b]$.
$\Omega=$ region below the graph of f.

$$
\text { Area of } \Omega=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Theorem

In general,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

where $F(x)$ is an antiderivative of $f(x)$.

Function	Antiderivative
x^{r}	$\frac{x^{r+1}}{r+1} \quad(r$ a rational number $\neq-1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec ^{2} x$	$\tan x$
$\sec x \tan x$	$\sec x$
$\csc ^{2} x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Quiz 2

Give the value of $\int_{-1}^{1}\left[x^{3}-2 x^{2}+\sin (\pi x)\right] d x$.
a. $\frac{1}{2}$
b. $\frac{4}{3}$
c. $-\frac{4}{3}$
d. $-\frac{1}{2}$
e. None of these

Example 1

Example

Find the area below the graph of the square-root function from $x=0$ to $x=1$.

Example 2

Example

Find the area bounded above by the curve $y=4-x^{2}$ and below by the x-axis.

Quiz 3

Give the area bounded between the x-axis and the graph of $y=x^{2}+1$ for $-1 \leq x \leq 2$.
a. 5
b. 4
c. 3
d. 2
e. None of these

Area between the graphs of two Nonnegative f and g

area of $\Omega=$ area of $\Omega_{1}-$ area of Ω_{2}
$f(x) \geq g(x) \geq 0 \quad$ for all x in $[a, b]$.
$\Omega=$ region between the graphs of f (Top) and g (Bottom).

Area of $\Omega=\int_{a}^{b}[$ Top - Bottom $] d x=\int_{a}^{b}[f(x)-g(x)] d x$.

Example 3

Example

Find the area bounded above by $y=x+2$ and below by $y=x^{2}$.

Area between the graphs of f and g

$f(x) \geq g(x) \quad$ for all x in $[a, b]$.
$\Omega=$ region between the graphs of f (Top) and g (Bottom).

$$
\begin{equation*}
\text { Area of } \Omega=\int_{a}^{b}[\text { Top - Bottom }] d x=\int_{a}^{b}[f(x)-g(x)] d x \tag{17}
\end{equation*}
$$

Example 4

Example

Find the area of the region shown in the figure below.

Example 5

Example

Find the area between $y=4 x$ and $y=x^{3}$ from $x=-2$ to $x=2$.

Example 6

Example

Use integrals to represent the area of the region $\Omega=\Omega_{1} \cup \Omega_{2}$ shaded in the figure below.

$\int_{a}^{c} f(x) d x$ as Signed Area

$f(x) \geq 0 \quad$ for all x in $[a, b]$
$\int_{a}^{b} f(x) d x=$ Area of Ω_{1}
$f(x) \leq 0 \quad$ for all x in $[b, c]$
$\int_{b}^{c} f(x) d x=-$ Area of Ω_{2}

$\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=$ Area of $\Omega_{1}-$ Area of Ω_{2}
$=$ Area above the x-axis - Area below the x-axis.
$\int_{a}^{b} f(x) d x$ as Signed Area

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{b} f(x) d x \\
& =\text { Area of } \Omega_{1}-\text { Area of } \Omega_{2}+\text { Area of } \Omega_{3}-\text { Area of } \Omega_{4} \\
& =\left[\text { Area of } \Omega_{1}+\text { Area of } \Omega_{3}\right]-\left[\text { Area of } \Omega_{2}+\text { Area of } \Omega_{4}\right] \\
& =\text { Area above the } x \text {-axis }- \text { Area below the } x \text {-axis. }
\end{aligned}
$$

Example 7

Example

Evaluate $\int_{-1}^{3}\left(x^{2}-2 x\right) d x$ and interpret the result in terms of areas.

Example 8

Example

Use integrals to represent the area of the region shaded in the figure below.

Quiz 4

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{-1}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 5

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{-1}^{2} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 6

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{0}^{2} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 7

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{2}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 8

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{0}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 9

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give the area bounded between the x-axis and $y=f(x)$ from $x=-1$ to $x=3$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

