Lecture 18 Section 5.5 Some Area Problems

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/Math1431

Jiwen He, University of Houston

Math 1431 - Section 24076, Lecture 18

1 / 24

Quiz 1

What is today?

- Monday a.
- b. Wednesday
- Friday c.
- d. None of these

4

Jiwen He, University of Houston

< 🗇 🕨

Area below the graph of a Nonnegative f

rea below f > 0 Area between f and g Signed Area

Fundamental Theorem of Integral Calculus

Theorem

In general,

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

where F(x) is an antiderivative of f(x).

Function	Antiderivative
<i>x''</i>	$\frac{x^{r+1}}{r+1} \qquad (r \text{ a rational number } \neq -1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec^2 x$	tan x
$\sec x \tan x$	sec x
$\csc^2 x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Jiwen He, University of Houston

4 / 24

Quiz 2

Give the value of
$$\int_{-1}^{1} [x^3 - 2x^2 + \sin(\pi x)] dx.$$

a. $\frac{1}{2}$
b. $\frac{4}{3}$
c. $-\frac{4}{3}$
d. $-\frac{1}{2}$
e. None of these

4

<ロ> (日) (日) (日) (日) (日)

Example

Find the area below the graph of the square-root function from x = 0 to x = 1.

Example

Find the area bounded above by the curve $y = 4 - x^2$ and below by the *x*-axis.

Quiz 3

Give the area bounded between the x-axis and the graph of $y = x^2 + 1$ for -1 < x < 2.

> 5 а.

3 c.

- d. 2
- None of these e.

3

A 🖓 🕨

Area between the graphs of two Nonnegative f and g

area of Ω = area of Ω_1 – area of Ω_2

 $f(x) \ge g(x) \ge 0$ for all x in [a, b].

 $\Omega =$ region between the graphs of f (Top) and g (Bottom).

Area of
$$\Omega = \int_{a}^{b} [\text{Top} - \text{Bottom}] dx = \int_{a}^{b} [f(x) - g(x)] dx.$$

Jiwen He, University of Houston

November 6, 2008

Example

Find the area bounded above by y = x + 2 and below by $y = x^2$.

Area between the graphs of f and g

 $f(x) \ge g(x)$ for all x in [a, b].

 $\Omega =$ region between the graphs of f (Top) and g (Bottom).

Area of
$$\Omega = \int_{a}^{b} [\text{Top } - \text{Bottom }] dx = \int_{a}^{b} [f(x) - g(x)] dx.$$

Example

Find the area of the region shown in the figure below.

Example

Find the area between y = 4x and $y = x^3$ from x = -2 to x = 2.

Example

Use integrals to represent the area of the region $\Omega=\Omega_1\cup\Omega_2$ shaded in the figure below.

$\int_{a}^{c} f(x) dx$ as Signed Area

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \text{Area of } \Omega_{1} - \text{Area of } \Omega_{2}$$
$$= \text{Area above the } x \text{-axis} - \text{Area below the } x \text{-axis.}$$

$\int_{a}^{b} f(x) dx$ as Signed Area

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{d} f(x) dx + \int_{d}^{e} f(x) dx + \int_{e}^{b} f(x) dx$$
$$= \text{Area of } \Omega_{1} - \text{Area of } \Omega_{2} + \text{Area of } \Omega_{3} - \text{Area of } \Omega_{4}$$
$$= [\text{Area of } \Omega_{1} + \text{Area of } \Omega_{3}] - [\text{Area of } \Omega_{2} + \text{Area of } \Omega_{4}]$$

= Area above the x-axis – Area below the x-axis.

Example

Evaluate $\int_{-1}^{3} (x^2 - 2x) dx$ and interpret the result in terms of areas.

Example

Use integrals to represent the area of the region shaded in the figure below.

Quiz 4

The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^{3} f(x) dx$. 0 a. 3 $y = x^2 - 2x$ $\frac{4}{3}$ b. 2 $\frac{8}{3}$ c. Ω_1 Ω_3 d. 4 x 3 -12 None of these e. Ω_2

Quiz 5

The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^{2} f(x) dx$. 0 a. 3 $y = x^2 - 2x$ $\frac{4}{3}$ b. 2 $\frac{8}{3}$ c. Ω_1 Ω_3 d. 4 x 3 -12 None of these e. Ω_2

Quiz 6

Quiz 7

Quiz 8

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 18

23 / 24

Quiz 9

The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give the area bounded between the x-axis and y = f(x) from x = -1 to x = 3.

