Lecture 18Section 5.5 Some Area Problems Jiwen He

Quiz 1
What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

1 Section 5.5 Some Area Problems

1.1 Area below the graph of a Nonnegative f

Area below the graph of a Nonnegative f

$$
\begin{aligned}
& f(x) \geq 0 \quad \text { for all } x \text { in }[a, b] . \\
& \Omega=\text { region below the graph of } f .
\end{aligned}
$$

$$
\text { Area of } \Omega=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Fundamental Theorem of Integral Calculus
Theorem 1. In general,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Function	Antiderivative
x^{r}	$\frac{x^{r+1}}{r+1} \quad(r$ a rational number $\neq-1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec ^{2} x$	$\tan x$
$\sec ^{x} \tan x$	$\sec x$
$\csc ^{2} x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Quiz 2

Give the value of $\int_{-1}^{1}\left[x^{3}-2 x^{2}+\sin (\pi x)\right] d x$.
a. $\frac{1}{2}$
b. $\frac{4}{3}$
c. $\quad-\frac{4}{3}$
d. $\quad-\frac{1}{2}$
e. None of these

Example 1
Example 2. Find the area below the graph of the square-root function from $x=0$ to $x=1$.

Example 2
Example 3. Find the area bounded above by the curve $y=4-x^{2}$ and below by the x-axis.

Quiz 3

Give the area bounded between the x-axis and the graph of $y=x^{2}+1$ for
$-1 \leq x \leq 2$.
a. 5
b. 4
c. 3
d. 2
e. None of these

1.2 Area between the graphs of f and g

Area between the graphs of two Nonnegative f and g

$f(x) \geq g(x) \geq 0 \quad$ for all x in $[a, b]$.
$\Omega=$ region between the graphs of f (Top) and g (Bottom).

Area of $\Omega=\int_{a}^{b}[$ Top - Bottom $] d x=\int_{a}^{b}[f(x)-g(x)] d x$.

Area between the graphs of f and g

$$
\begin{aligned}
& f(x) \geq g(x) \quad \text { for all } x \text { in }[a, b] . \\
& \Omega=\text { region between the graphs of } f(\text { Top }) \text { and } g \text { (Bottom). } \\
& \text { Area of } \Omega=\int_{a}^{b}[\text { Top }- \text { Bottom }] d x=\int_{a}^{b}[f(x)-g(x)] d x
\end{aligned}
$$

Example 4
Example 5. Find the area of the region shown in the figure below.

Example 5

Example 6
$\underset{\text { Example 7. }}{\text { Exampe }}$. Use integrals to represent the area of the region $\Omega=\Omega_{1} \cup \Omega_{2}$ shaded in the figure below.

1.3 Signed Area

$\int_{a}^{c} f(x) d x$ as Signed Area

$$
\begin{aligned}
& f(x) \geq 0 \quad \text { for all } x \text { in }[a, b] \\
& \int_{a}^{b} f(x) d x=\text { Area of } \Omega_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f(x) \leq 0 \quad \text { for all } x \text { in }[b, c] \\
& \int_{b}^{c} f(x) d x=- \text { Area of } \Omega_{2}
\end{aligned}
$$

$$
\begin{aligned}
\int_{a}^{c} f(x) d x & =\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\text { Area of } \Omega_{1}-\text { Area of } \Omega_{2} \\
& =\text { Area above the } x \text {-axis }- \text { Area below the } x \text {-axis. }
\end{aligned}
$$

$\int_{a}^{b} f(x) d x$ as Signed Area

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{b} f(x) d x \\
& =\text { Area of } \Omega_{1}-\text { Area of } \Omega_{2}+\text { Area of } \Omega_{3}-\text { Area of } \Omega_{4} \\
& =\left[\text { Area of } \Omega_{1}+\text { Area of } \Omega_{3}\right]-\left[\text { Area of } \Omega_{2}+\text { Area of } \Omega_{4}\right] \\
& =\text { Area above the } x \text {-axis }- \text { Area below the } x \text {-axis. }
\end{aligned}
$$

Example 7
Example 8. Evaluate $\int_{-1}^{3}\left(x^{2}-2 x\right) d x$ and interpret the result in terms of areas.

Example 8
Example 9. Use integrals to represent the area of the region shaded in the figure below.

Quiz 4

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{-1}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 5

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{-1}^{2} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 6
The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{0}^{2} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 7

The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{2}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 8
The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give $\int_{0}^{3} f(x) d x$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

Quiz 9
The graph of $y=f(x)$ is shown below. Ω_{1} has area $\frac{4}{3}, \Omega_{2}$ has area $\frac{4}{3}$, and Ω_{3} has area $\frac{4}{3}$. Give the area bounded between the x -axis and $y=f(x)$ from $x=-1$ to $x=3$.
a. 0
b. $\frac{4}{3}$
c. $\frac{8}{3}$
d. 4
e. None of these

