Lecture 18 Section 5.5 Some Area Problems

Jiwen He

Quiz 1

What is today?

- a. Monday
- b. Wednesday
- c. Friday
- d. None of these

1 Section 5.5 Some Area Problems

1.1 Area below the graph of a Nonnegative f Area below the graph of a Nonnegative f

 $f(x) \ge 0$ for all x in [a, b].

 $\Omega =$ region below the graph of f.

Area of
$$\Omega = \int_a^b f(x) dx = F(b) - F(a)$$

where F(x) is an antiderivative of f(x).

Fundamental Theorem of Integral Calculus

Theorem 1. In general,

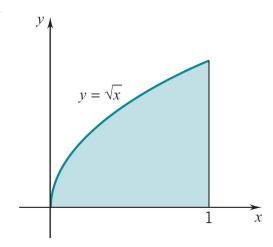
$$\int_{a}^{b} f(x) dx = F(b) - F(a).$$

where F(x) is an antiderivative of f(x).

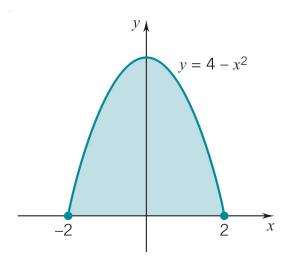
Function	Antiderivative
χ^r	$\frac{x^{r+1}}{r+1} \qquad (r \text{ a rational number } \neq -1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec^2 x$	tan x
sec x tan x	sec x
$\csc^2 x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Quiz 2 Give the value of $\int_{-1}^{1} \left[x^3 - 2x^2 + \sin(\pi x) \right] dx$.

a.
$$\frac{1}{2}$$


b.
$$\frac{4}{3}$$

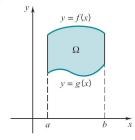
c.
$$-\frac{4}{3}$$

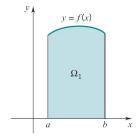

d.
$$-\frac{1}{2}$$

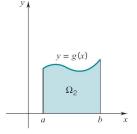
None of these

Example 1 Example 2. Find the area below the graph of the square-root function from x = 0 to x = 1.

Example 2 Example 3. Find the area bounded above by the curve $y = 4 - x^2$ and below by the x-axis.

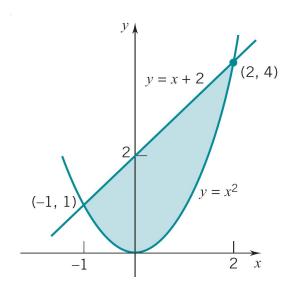

Quiz 3 Give the area bounded between the x-axis and the graph of $y = x^2 + 1$ for


 $-1 \le x \le 2$.

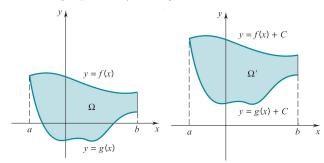

- a. 5
- b. 4
- c. 3
- d. 2
- e. None of these

1.2 Area between the graphs of f and g

Area between the graphs of two Nonnegative f and g


area of $\Omega=$ area of Ω_1 – area of Ω_2

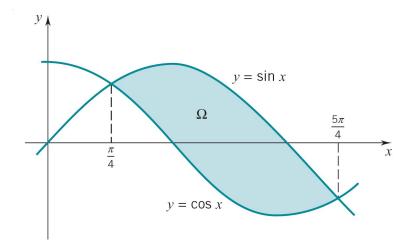
$$f(x) \ge g(x) \ge 0$$
 for all x in $[a, b]$.


 $\Omega =$ region between the graphs of f (Top) and g (Bottom).

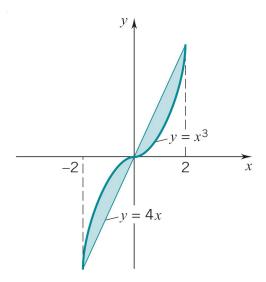
Area of
$$\Omega = \int_a^b \left[\text{ Top } - \text{ Bottom } \right] dx = \int_a^b \left[f(x) - g(x) \right] dx.$$

Example 3 Example 4. Find the area bounded above by y = x + 2 and below by $y = x^2$.

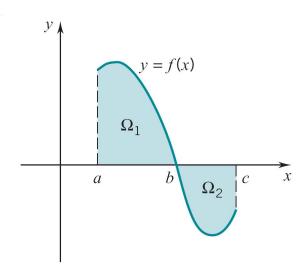
Area between the graphs of f and g



 $f(x) \ge g(x)$ for all x in [a, b].


 $\Omega = \mbox{ region}$ between the graphs of f (Top) and g (Bottom).

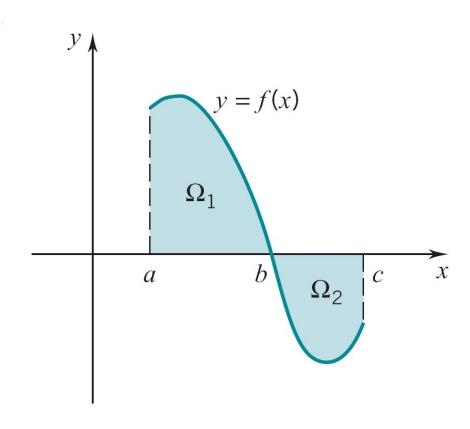
Area of
$$\Omega = \int_a^b \left[\text{ Top } - \text{ Bottom } \right] dx = \int_a^b \left[f(x) - g(x) \right] dx.$$


Example 4 Example 5. Find the area of the region shown in the figure below.

Example 5 Example 6. Find the area between y = 4x and $y = x^3$ from x = -2 to x = 2.

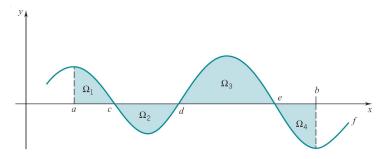
Example 6 Example 7. Use integrals to represent the area of the region $\Omega = \Omega_1 \cup \Omega_2$ shaded in the figure below.

1.3 Signed Area


 $\int_a^c f(x) dx$ as Signed Area

$$f(x) \ge 0$$
 for all x in $[a, b]$

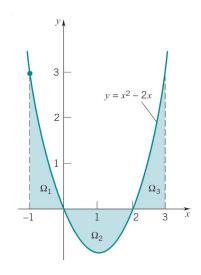
$$\int_{a}^{b} f(x) dx = \text{Area of } \Omega_{1}$$


$$f(x) \le 0$$
 for all x in $[b, c]$

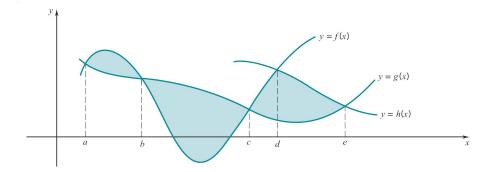
$$\int_{b}^{c} f(x) dx = -\text{Area of } \Omega_{2}$$

$$\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx = \text{Area of } \Omega_1 - \text{Area of } \Omega_2$$
$$= \text{Area above the } x\text{-axis} - \text{Area below the } x\text{-axis}.$$

$\int_a^b f(x) dx$ as Signed Area

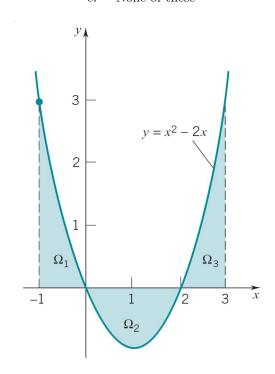

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{d} f(x) dx + \int_{d}^{e} f(x) dx + \int_{e}^{b} f(x) dx$$

$$= \text{Area of } \Omega_{1} - \text{Area of } \Omega_{2} + \text{Area of } \Omega_{3} - \text{Area of } \Omega_{4}$$

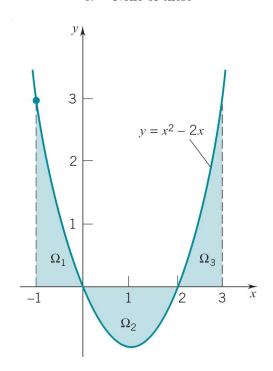

$$= \left[\text{Area of } \Omega_{1} + \text{Area of } \Omega_{3} \right] - \left[\text{Area of } \Omega_{2} + \text{Area of } \Omega_{4} \right]$$

$$= \text{Area above the } x\text{-axis} - \text{Area below the } x\text{-axis}.$$

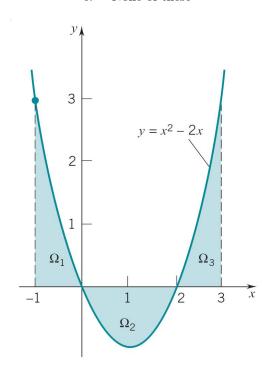
Example 7 Example 8. Evaluate $\int_{-1}^{3} (x^2 - 2x) dx$ and interpret the result in terms of areas.



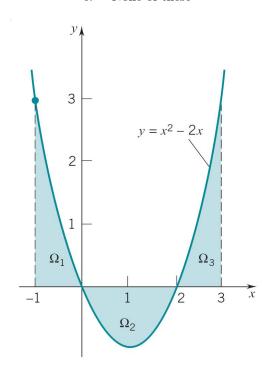
Example 8 Example 9. Use integrals to represent the area of the region shaded in the figure below.


Quiz 4
The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^3 f(x) \, dx$.

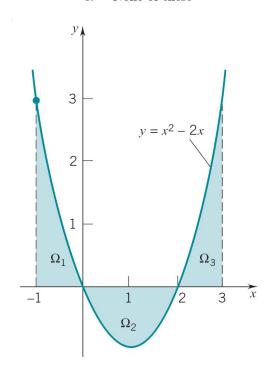
- b.
- $\mathrm{d}.$
- None of these


Quiz 5
The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_{-1}^2 f(x) \, dx$.

- 0 a.
- b.
- c.
- d. 4
- None of these e.

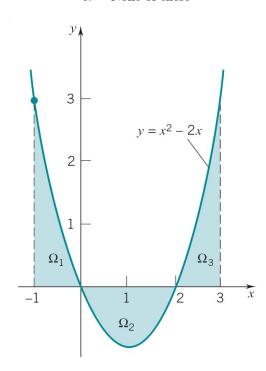

Quiz 6 The graph of y=f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_0^2 f(x) \, dx$.

- 0 a.
- b.
- c.
- d. 4
- None of these e.


Quiz 7 The graph of y=f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_2^3 f(x) \, dx$.

- 0 a.
- b.
- c.
- d. 4
- None of these e.

Quiz 8 The graph of y=f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give $\int_0^3 f(x) \, dx$.


- a. 0
- b. $\frac{4}{3}$
- c. $\frac{8}{3}$
- d. 4
- e. None of these

Quiz 9

The graph of y = f(x) is shown below. Ω_1 has area $\frac{4}{3}$, Ω_2 has area $\frac{4}{3}$, and Ω_3 has area $\frac{4}{3}$. Give the area bounded between the x-axis and y = f(x) from x = -1 to x = 3.

- a. 0
- b. $\frac{4}{3}$
- c. $\frac{8}{3}$
- d. 4
- e. None of these

