Lecture 19

Section 5.6 Indefinite Integrals Section 5.7 The u-Substitution

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

Definite Integral

Fundamental Theorem of Integral Calculus

In general,

$$
\int_{a}^{b} f(x) d x=[F(x)]_{a}^{b} .
$$

where $F(x)$ is an antiderivative of $f(x)$, i.e., $F^{\prime}(x)=f(x)$.

Function	Antiderivative
x^{r}	$\frac{x^{r+1}}{r+1} \quad(r$ a rational number $\neq-1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec ^{2} x$	$\tan x$
$\sec x \tan x$	$\sec x$
$\csc ^{2} x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Quiz 2

Give the value of $\int_{-1}^{2}\left(2 x^{2}-3 x-5\right) d x$.
a. -12
b. -13
c. $-\frac{27}{2}$
d. $-\frac{29}{2}$
e. None of these

Definite Integral as Signed Area

$$
\begin{aligned}
& =\int_{a}^{b} f(x) d x \\
& =\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{b} f(x) d x \\
& =\text { Area of } \Omega_{1}+\left(- \text { Area of } \Omega_{2}\right)+\text { Area of } \Omega_{3}+\left(- \text { Area of } \Omega_{4}\right) \\
& \left.=\text { (Area of } \Omega_{1}+\text { Area of } \Omega_{3}\right)-\left(\text { Area of } \Omega_{2}+\text { Area of } \Omega_{4}\right)
\end{aligned}
$$

$$
=\text { Area above the } x \text {-axis }- \text { Area below the } x \text {-axis. }
$$

Quiz 4

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3, Ω_{3} has area 8, and Ω_{4} has area 4. Give $\int_{a}^{b} f(x) d x$.
a. 1
b. 3
c. 12
d. 14

e. None of these

Quiz 5

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area $3, \Omega_{3}$ has area 8 , and Ω_{4} has area 4. Give $\int_{a}^{e} f(x) d x$.
a. 1
b. 3
c. $\quad 12$
d. 14

e. None of these

Quiz 6

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area $3, \Omega_{3}$ has area 8 , and Ω_{4} has area 4 . Give the area bounded by the graph of f and the x-axis for $d \leq x \leq b$.
a. 1
b. 3
c. 12
d. 14

e. None of these

Indefinite Integral as General Antiderivative

The Indefinite Integral of f

$$
\int f(x) d x=\text { The general anti-derivative of } f
$$

Example

$$
\int x^{2} d x=\frac{1}{3} x^{3}+C
$$

where C is an arbitrary constant.

The indefinite integral f is a family of antiderivatives of f.

Indefinite Integral as General Antiderivative

The Indefinite Integral of f

In general,

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$ and C is an arbitrary constant.

Example

$$
\int \sqrt{x} d x=\frac{2}{3} x^{3 / 2}+C
$$

The indefinite integral f is a family of antiderivatives of f.

Indefinite Integral as General Antiderivative

The Indefinite Integral of f

In general,

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$ and C is an arbitrary constant.

$$
\begin{array}{ll}
\int x^{r} d x=\frac{x^{r+1}}{r+1}+C & (r \text { rational, } r \neq-1) \\
\int \sin x d x=-\cos x+C & \int \cos x d x=\sin x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \sec x \tan x d x=\sec x+C \\
\int \csc ^{2} x d x=-\cot x+C & \int \csc x \cot x d x=-\csc x+C
\end{array}
$$

Further Properties of Integral Calculus

Theorem

1. $\int(f(x)+g(x)) d x=\int f(x) d x+\int g(x) d x$
2. $\int \alpha f(x) d x=\alpha \int f(x) d x, \quad \alpha$ a constant

In general,

$$
\int(\alpha f(x)+\beta g(x)) d x=\alpha \int f(x) d x+\beta \int g(x) d x
$$

where α and β are constants.

Example

Example
 Calculate $\int\left(5 x^{3 / 2}-2 \csc ^{2} x\right) d x$

Example

Example

Find f given that $f^{\prime}(x)=x^{3}+2$ and $f(0)=1$.

Note that, since f^{\prime} is the derivative of f, f is an antiderivative for f^{\prime} :

$$
f(x)=\int f^{\prime}(x) d x
$$

The constant of integration C can be evaluated using the fact that $f(0)=1$.

Undoing the Chain Rule: The u-Substitution

Note: Most differentiation involves the chain rule, so we should expect that most antidifferentiation will involve
undoing the chain rule (the u-Substitution)

If F is an antiderivative for f, then

$$
\begin{aligned}
\frac{d}{d x}[F(u(x))] & =F^{\prime}(u(x)) u^{\prime}(x)=f(u(x)) u^{\prime}(x) \\
\int f(u(x)) u^{\prime}(x) d x & =\int f(u) d u=F(u)+C=F(u(x))+C .
\end{aligned}
$$

Undoing the Chain Rule

Undoing the Chain Rule

$F(x)$	$F^{\prime}(x)$
$\frac{1}{n+1}[u(x)]^{n+1}$	$[u(x)]^{n} u^{\prime}(x)$
$\sin [u(x)]$	$\cos [u(x)] u^{\prime}(x)$
$\cos [u(x)]$	$-\sin [u(x)] u^{\prime}(x)$
$\tan [u(x)]$	$\sec ^{2}[u(x)] u^{\prime}(x)$
$\cot [u(x)]$	$-\csc ^{2}[u(x)] u^{\prime}(x)$
$\sec [u(x)]$	$\sec [u(x)] \tan [u(x)] u^{\prime}(x)$
$\csc [u(x)]$	$-\csc [u(x)] \cot [u(x)] u^{\prime}(x)$

The u-Substitution

$$
\begin{aligned}
& u=g(x), \\
& \text { Original Integral } \quad d u=g^{\prime}(x) d x \\
& \begin{array}{l}
\int[g(x)]^{r} g^{\prime}(x) d x \\
\int \sin [g(x)] g^{\prime}(x) d x
\end{array} \\
& \int \cos [g(x)] g^{\prime}(x) d x \\
& \int \sec ^{2}[g(x)] g^{\prime}(x) d x \\
& \int \sec [g(x)] \tan [g(x)] g^{\prime}(x) d x \\
& \int \csc ^{2}[g(x)] g^{\prime}(x) d x \\
& \int \csc [g(x)] \cot [g(x)] g^{\prime}(x) d x \\
& \begin{array}{l}
\rightarrow \quad \int u^{r} d u=\frac{u^{r+1}}{r+1}+C=\frac{[g(x)]^{r+1}}{r+1}+C \quad(r \neq-1) \\
\rightarrow \quad \int \sin u d u=-\cos u+C=-\cos [g(x)]+C \\
\rightarrow \quad \int \cos u d u=\sin u+C=\sin [g(x)]+C \\
\rightarrow \quad \int \sec ^{2} u d u=\tan u+C=\tan [g(x)]+C \\
\rightarrow \quad \int \sec u \tan u d u=\sec u+C=\sec [g(x)]+C \\
\rightarrow \quad \int \csc ^{2} u d u=-\cot u+C=-\cot [g(x)]+C \\
\end{array}
\end{aligned}
$$

Examples

Examples

Calculate

1. $\int\left(x^{2}-1\right)^{4} 2 x d x$
2. $\int 3 x^{2} \cos \left(x^{3}+2\right) d x$
3. $\int \sin x \cos x d x$
4. $\int \frac{d x}{(3+5 x)^{2}}$

Examples

Examples

Calculate
5. $\int x^{2} \sqrt{4+x^{3}} d x$
6. $\int 2 x^{3} \sec ^{2}\left(x^{4}+1\right) d x$
7. $\int \sec ^{3} x \tan x d x$
8. $\int x(x-3)^{5} d x$

Substitution in Definite Integrals

The Change of Variables Formula

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u .
$$

We change the limits of integration to reflect the substitution.

Examples

Examples

Evaluate

1. $\int_{0}^{2}\left(x^{2}-1\right)\left(x^{3}-3 x+2\right)^{3} d x$
2. $\int_{0}^{1 / 2} \cos ^{3} \pi x \sin \pi x d x$
3. $\int_{0}^{\sqrt{3}} x^{5} \sqrt{x^{2}+1} d x$
