Lecture 20 Section 5.8 Properties of Definite Integral Section 5.9 Mean-Value Theorems for Integrals Jiwen He

Test 3

- Tentative Dates for Test 3: Dec. 4-6 in CASA

Final Exam

- Final Exam: Dec. 14-17 in CASA

Review for Test 3

- Review for Test 3 by the College Success Program.
- Friday, November $212: 30-3: 30 \mathrm{pm}$ in the basement of the library by the C-site.

Help Session for Homework

- Homework Help Session by Prof. Morgan.
- Tonight 8:00-10:00pm in 100 SEC

Online Quizzes

- Online Quizzes are available on CourseWare.

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

1 Section 5.8 Additional Properties of the Definite Integral

Properties 1 and 2

$$
\begin{aligned}
& \text { 1. } \quad \int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \\
& \text { 2. } \quad \int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x, \quad \alpha \text { a constant }
\end{aligned}
$$

In general,

$$
\int_{a}^{b}(\alpha f(x)+\beta g(x)) d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x
$$

where α and β are constants.
Quiz 2
Give the value of $\int_{1}^{2} \frac{t^{4}+1}{t^{2}} d t$.
a. 2
b. 3
c. $\frac{17}{6}$
d. $\frac{21}{6}$
e. None of these

Property 3

$$
\text { 3. } \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

for all choices of a, b and c from an interval on which f is continous.

$$
\begin{aligned}
\int_{c}^{c} f(x) d x & =0 \\
\int_{a}^{b} f(x) d x & =-\int_{b}^{a} f(x) d x
\end{aligned}
$$

Quiz 3
The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8 , and Ω_{4} has area 4. Give $\int_{c}^{b} f(x) d x$.
a. 1
b. 3
c. 12
d. 14
e. None of these

Quiz 4
The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8 , and Ω_{4} has area 4. Give $\int_{d}^{c} f(x) d x$.
a. 1
b. 3
c. 12
d. 14
e. None of these

Properties 4 and 5

$$
\begin{aligned}
& \int_{-a}^{0} f(x) d x=\int_{0}^{a} f(-x) d x \\
& \int_{-a}^{a} f(x) d x=\int_{0}^{a}[f(x)+f(-x)] d x
\end{aligned}
$$

4. if f is odd on $[-a, a]$, then $\int_{-a}^{a} f(x) d x=0$.
5. if f is even on $[-a, a]$, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$

Definite Integrals of Odd and Even Functions

Quiz 5
Give the value of $\int_{-\pi}^{\pi}(\sin x-x \cos x)^{3} d x$.
a. 0
b. π
c. $\quad 2 \pi$
d. $-\pi$
e. None of these

Area below the graph of a Nonnegative f

$$
\begin{aligned}
& f(x) \geq 0 \quad \text { for all } x \text { in }[a, b] . \\
& \Omega=\text { region below the graph of } f .
\end{aligned}
$$

$$
\text { Area of } \Omega=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Properties 6 and 7

6. If $f \geq 0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.
7. If $f>0$ on $[a, b]$, then $\int_{a}^{b} f(x) d x>0$.

$$
\begin{aligned}
& \text { If } f \geq g \text { on }[a, b] \text {, then } \int_{a}^{b} f(x) d x \geq \int_{a}^{b} g(x) d x \\
& \text { If } f>g \text { on }[a, b] \text {, then } \int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x \\
& m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a)
\end{aligned}
$$

where m and M are the min and max of f on $[a, b]$ resp.

Property 8

8. $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\text { Area above the } x \text {-axis - Area below the } x \text {-axis } \\
& \int_{a}^{b}|f(x)| d x=\text { Area above the } x \text {-axis + Area below the } x \text {-axis }
\end{aligned}
$$

Quiz 6
The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8, and Ω_{4} has area 4. Give $\int_{d}^{b}|f(x)| d x$.
a. 1
b. 3
c. 12
d. 14
e. None of these

Quiz 7

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3, Ω_{3} has area 8 , and Ω_{4} has area 4 . Give the area bounded by the graph of f and the x-axis for $d \leq x \leq b$.
a. 1
b. 3
c. 12
d. 14
e. None of these

Definite Integral and Antiderivative

$F(x)=$ area from a to x and $F(x+h)=$ area from a to $x+h$.
Therefore $F(x+h)-F(x)=$ area from x to $x+h \cong f(x) h$ if h is small and

$$
\begin{aligned}
\frac{F(x+h)-F(x)}{h} \cong \frac{f(x) h}{h} & =f(x) . \\
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right) & =f(x) .
\end{aligned}
$$

Examples

Examples 1. Find

1. $\frac{d}{d x}\left(\int_{0}^{x} \frac{t}{\left(1+t^{2}\right)^{2}} d t\right)$
2. $\frac{d}{d x}\left(\int_{-3}^{x}\left(3 t-\sin \left(t^{2}\right)\right) d t\right)$
3. $\frac{d}{d x}\left(\int_{x}^{1}\left(3 t-\sin \left(t^{2}\right)\right) d t\right)$
4. $\quad f(x)$ such that $\int_{-2}^{x} f(t) d t=\cos (2 x)+1$.

Property 9

$$
\begin{gathered}
\text { 9. } \frac{d}{d x}\left(\int_{a}^{u} f(t) d t\right)=f(u) \frac{d u}{d x} \\
\frac{d}{d x}\left(\int_{v}^{b} f(t) d t\right)=-f(v) \frac{d v}{d x} \\
\frac{d}{d x}\left(\int_{v}^{u} f(t) d t\right)=f(u) \frac{d u}{d x}-f(v) \frac{d v}{d x}
\end{gathered}
$$

Examples

Examples 2. Find

1. $\frac{d}{d x}\left(\int_{0}^{x^{3}} \frac{d t}{1+t}\right)$
2. $\frac{d}{d x}\left(\int_{-3}^{x^{2}}\left(3 t-\sin \left(t^{2}\right)\right) d t\right)$
3. $\frac{d}{d x}\left(\int_{x}^{2 x} \frac{d t}{1+t^{2}}\right)$

2 Section 5.9 Mean-Value Theorems for Integrals

Definite Integral and the Mean-Value
Mean-Value Theorems for Integrals: $f=$ constant

$$
\left.\int_{a}^{b} f(x) d x=\text { (the constant value of } f\right) \cdot(b-a) .
$$

$$
\text { area }=(\text { the constant value of } f) \cdot(b-a)
$$

Definite Integral and the Mean-Value
Mean-Value Theorems for Integrals

$$
\begin{gathered}
\left.\int_{a}^{b} f(x) d x=\text { (the average value of } f \text { on }[a, b]\right) \cdot(b-a) . \\
\text { area of } \Omega=\text { (the average value of } f \text { on }[a, b]) \cdot(b-a)
\end{gathered}
$$

The Average value of f
Let $f_{\text {avg }}$ denote the average or mean value of f on $[a, b]$. Then

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The First Mean-Value Theorems for Integrals
If f is continous on $[a, b]$, then there is at least one number c in (a, b) for which

$$
f(c)=f_{\text {avg }}
$$

Examples

Evaluate the average value of the function f on $[a, b]$:

1. $f(x)=k, k$ a constant.
2. $f(x)=x$
3. $f(x)=x^{2}$.

The Weighted Average value of f

Let $f_{g \text {-avg }}$ denote the g-weighted average of f on $[a, b]$, i.e,,

$$
f_{g \text {-avg }}=\frac{1}{\int_{a}^{b} g(x) d x} \int_{a}^{b} f(x) g(x) d x
$$

for g nonnegative.
The Second Mean-Value Theorems for Integrals
If f is continous on $[a, b]$, then there is at least one number c in (a, b) for which

$$
f(c)=f_{g-\mathrm{avg}}
$$

The center of mass x_{M} of a rod lying on the x-axis from a to b is

$$
x_{M}=\frac{1}{\int_{a}^{b} \lambda(x) d x} \int_{a}^{b} x \lambda(x) d x, \quad \lambda(x) \text { the mass density. }
$$

