Lecture 21

Section 6.1 More on Area Section 6.2 Volume by Parallel Cross Section

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu math.uh.edu/~jiwenhe/Math1431

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 21 Nov

lovember 18, 2008

• Test 3: Dec. 4-6 in CASA

4

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 21 November 18, 1

<ロ> (日) (日) (日) (日) (日)

Final Exam

• Final Exam: Dec. 14-17 in CASA

4

- ∢ ≣ →

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 21 November 18, 20

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Review for Test 3

- Review for Test 3 by the College Success Program.
- Friday, November 21 2:30-3:30pm in the basement of the library by the C-site.

Online Quizzes

• Online Quizzes are available on CourseWare.

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 21 November 18, 20

< 17 ▶

What is today?

- a. Monday
- b. Wednesday
- c. Friday
- d. None of these

문어 문

< 行い

Section 6.1 Section 6.2

The Average value of f

Let f_{avg} denote the average or mean value of f on [a, b]. Then

$$f_{\mathsf{avg}} = rac{1}{b-a} \int_a^b f(x) \, dx.$$

The First Mean-Value Theorems for Integrals

If f is continous on [a, b], then there is at least one number c in (a, b) for which

$$f(c) = f_{avg}.$$

Jiwen He, University of Houston

The graph of y = f(x) is shown below, where Ω_1 has area 2, Ω_2 has area 3, Ω_3 has area 8, and Ω_4 has area 4. Give the average value of f on the interval [d, b] with d = 3 and b = 6.

The graph of y = f(x) is shown below, where Ω_1 has area 2, Ω_2 has area 3, Ω_3 has area 8, and Ω_4 has area 4. How many values of c satisfy the conclusion of the mean value theorem for integrals on the interval [d, b] with d = 3 and b = 6.

The graph of y = f(x) is shown below, where Ω_1 has area 2, Ω_2 has area 3, Ω_3 has area 8, and Ω_4 has area 4. Give the average value of f on the interval [a, b] with a = 1 and b = 6.

The graph of y = f(x) is shown below, where Ω_1 has area 2, Ω_2 has area 3, Ω_3 has area 8, and Ω_4 has area 4. How many values of c satisfy the conclusion of the mean value theorem for integrals on the interval [a, b] with d = 1 and b = 6.

Representative Rectangle, Riemann Sum and Area: $f \ge 0$

$$\int_a^b f(x) \, dx = \lim_{\|P\| \to 0} \sum f(x_i^*) \Delta x_i.$$

area
$$= \int_a^b f(x) dx \approx \sum f(x_i^*) \Delta x_i.$$

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 2

Section 6.1 Section 6.2

Area by Integration with Respect to x: $f(x) \ge g(x)$

$$area(\Omega) = \int_{a}^{b} [f(x) - g(x)] dx = \lim_{\|P\| \to 0} \sum [f(x_{i}^{*}) - g(x_{i}^{*})] \Delta x_{i}.$$

Jiwen He, University of Houston

Section 6.1 Section 6.2

Area by Integration with Respect to y: $\overline{F(y)} \ge \overline{G(y)}$

area
$$(\Omega) = \int_{c}^{d} [F(y) - G(y)] dy = \lim_{\|P\| \to 0} \sum [F(y_{i}^{*}) - G(y_{i}^{*})] \Delta y_{i}.$$

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 2

2

 $v = x^4 - 2x^2$

x

큰

Find the area of the shaded region shown in the figure below.

큰

Example

Find the area of the shaded region shown in the figure below by integrating with respect to x.

큰

Example

Find the area of the shaded region shown in the figure below by integrating with respect to y.

Jiwen He, University of Houston

Right Cylinder with Cross Section

Volume of a Right Cylinder with Cross Section

 $V = A \cdot h = (cross-sectional area) \cdot height$

Right Circular Cylinder and Rectangular Box

$$V = I \cdot w \cdot h = (cross-sectional area) \cdot height$$

Jiwen He, University of Houston

Volume by Parallel Cross Section

Jiwen He, University of Houston

- 本間 と 本語 と 本語 と

Example

Find the volume of the pyramid shown in the figure below.

Jiwen He, University of Houston

Example

The base of a solid is the region bounded by the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Find the volume of the solid given that each cross section is an isosceles triangle with base in the region and altitude equal to one-half the base.

Example

The base of a solid is the region between the parabolas $x = y^2$ and $x = 3 - 2y^2$. Find the volume of the solid given that the cross sections are squares.

Solid of Revolution About the *x*-Axis

Section 6.1 Section 6.2

Jiwen He, University of Houston

Math 1431 – Section 24076, Lecture 2

Example

Find the volume of the cone shown in the figure below.

Example

Find the volume of a sphere of radius r by revolving about the x-axis the region below the graph of

$$f(x) = \sqrt{r^2 - x^2}, \quad -r \le x \le r.$$

▲ □ ▶ → ● ▶

3

Solid of Revolution About the y-Axis

Section 6.1 Section 6.2

$$V = \int_{c}^{a} \pi[g(y)]^{2} dy = \lim_{\|P\| \to 0} \sum \pi[g(y_{i}^{*})]^{2} \Delta y_{i}.$$

搟

-2

・ 同下 ・ ヨト ・ ヨト

Example

Find the volume of the solid shown in the figure below.

큰

< 回 ト < 三 ト < 三 ト

Section 6.1 Section 6.2

olume-Cross Section Revolution-Disk Revolution-Washe

Solid of Revolution About the x-Axis

Cylinder Volume: $\pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$ Riemann Sum: $\sum \pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) \, dx = \lim_{\|P\| \to 0} \sum \pi([f(x_{i}^{*})]^{2} - [g(x_{i}^{*})]^{2}) \Delta x_{i}$$

Jiwen He, University of Houston

Solid of Revolution About the *y*-Axis

Section 6.1 Section 6.2

Cylinder Volume: $\pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$ Riemann Sum: $\sum \pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$

$$V = \int_{c}^{d} \pi([F(y)]^{2} - [G(y)]^{2}) \, dy = \lim_{\|P\| \to 0} \sum \pi([F(y_{i}^{*})]^{2} - [G(y_{i}^{*})]^{2}) \Delta y_{i}$$

Jiwen He, University of Houston

э

- 4 回 ト - 4 回 ト

Example

Find the volume of the solid generated by revolving the region between $y = x^2$ and y = 2x about the x-axis.

Example

Find the volume of the solid generated by revolving the region between $y = x^2$ and y = 2x about the y-axis.

