Lecture 21Section 6.1 More on Area Section 6.2 Volume by Parallel Cross Section

Jiwen He

Test 3

- Test 3: Dec. 4-6 in CASA

Final Exam

- Final Exam: Dec. 14-17 in CASA

Review for Test 3

- Review for Test 3 by the College Success Program.
- Friday, November $212: 30-3: 30 \mathrm{pm}$ in the basement of the library by the C-site.

Online Quizzes

- Online Quizzes are available on CourseWare.

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

The Average value of f

Let $f_{\text {avg }}$ denote the average or mean value of f on $[a, b]$. Then

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The First Mean-Value Theorems for Integrals

If f is continous on $[a, b]$, then there is at least one number c in (a, b) for which

$$
f(c)=f_{\mathrm{avg}} .
$$

Quiz 2

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8, and Ω_{4} has area 4. Give the average value of f on the interval $[d, b]$ with $d=3$ and $b=6$.
a. $1 / 3$
b. $2 / 3$
c. 1
d. $4 / 3$
e. None of these

Quiz 3

The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8 , and Ω_{4} has area 4 . How many values of c satisfy the conclusion of the mean value theorem for integrals on the interval $[d, b]$ with $d=3$ and $b=6$.
a. 1
b. 2
c. 3
d. None of these

Quiz 4
The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8 , and Ω_{4} has area 4. Give the average value of f on the interval $[a, b]$ with $a=1$ and $b=6$.
a. $1 / 5$
b. $2 / 5$
c. $3 / 5$
d. $4 / 5$
e. None of these

Quiz 5
The graph of $y=f(x)$ is shown below, where Ω_{1} has area $2, \Omega_{2}$ has area 3 , Ω_{3} has area 8 , and Ω_{4} has area 4 . How many values of c satisfy the conclusion of the mean value theorem for integrals on the interval $[a, b]$ with $d=1$ and $b=6$.
a. 1
b. 2
c. 3
d. None of these

1 Section 6.1 More on Area

Representative Rectangle, Riemann Sum and Area: $f \geq 0$
Rectangle: $f\left(x_{i}^{*}\right) \Delta x_{i}$

Riemann Sum: $\sum f\left(x_{i}^{*}\right) \Delta x_{i}$

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} \sum f\left(x_{i}^{*}\right) \Delta x_{i} .
$$

$$
\text { area }=\int_{a}^{b} f(x) d x \approx \sum f\left(x_{i}^{*}\right) \Delta x_{i} .
$$

Area by Integration with Respect to $x: f(x) \geq g(x)$
Rectangle Area $\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i}$

Riemann Sum $\sum\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i}$

Area by Integration with Respect to $y: F(y) \geq G(y)$
Rectangle Area $\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{i}$

Riemann Sum $\sum\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{i}$

Example
Example 1. Find the area of the shaded region shown in the figure below.

Example
Example 2. Find the area of the shaded region shown in the figure below.

Example
Example 3. Find the area of the shaded region shown in the figure below by integrating with respect to x.

Example
Example 4. Find the area of the shaded region shown in the figure below by integrating with respect to y.

2 Volume by Parallel Cross Section

2.1 Volume by Parallel Cross Section

Right Cylinder with Cross Section

Volume of a Right Cylinder with Cross Section
$V=A \cdot h=($ cross-sectional area) \cdot height

Right Circular Cylinder and Rectangular Box

$V=\pi r^{2} h=($ cross-sectional area $) \cdot$ height

$V=l \cdot w \cdot h=($ cross-sectional area $) \cdot$ height

Volume of a Right Circular Cylinder
$V=\pi r^{2} \cdot h=($ cross-sectional area $) \cdot$ height

Volume of a Rectangular Box

$$
V=l \cdot w \cdot h=(\text { cross-sectional area }) \cdot \text { height }
$$

Volume by Parallel Cross Section

Cylinder Volume $A\left(x_{i}^{*}\right) \Delta x_{i}$

$$
V=\int_{a}^{b} A(x) d x=\lim _{\|P\| \rightarrow 0} \sum A\left(x_{i}^{*}\right) \Delta x_{i}
$$

Example

Example 5. Find the volume of the pyramid shown in the figure below.

Example 6 . The base of a solid is the region bounded by the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Find the volume of the solid given that each cross section is an isosceles triangle with base in the region and altitude equal to one-half the base.

Example
Example 7. The base of a solid is the region between the parabolas $x=y^{2}$ and $x=3-2 y^{2}$. Find the volume of the solid given that the cross sections are squares.

2.2 Solid of Revolution: Disk Method

Solid of Revolution About the x-Axis
Cylinder Volume: $\pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i} \quad$ Riemann Sum: $\sum \pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i}$

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x=\lim _{\|P\| \rightarrow 0} \sum \pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i} .
$$

Example 8. Find the volume of the cone shown in the figure below.

Example
Example 9. Find the volume of a sphere of radius r by revolving about the x-axis the region below the graph of

$$
f(x)=\sqrt{r^{2}-x^{2}}, \quad-r \leq x \leq r
$$

Solid of Revolution About the y-Axis
Cylinder Volume: $\pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i} \quad$ Riemann Sum: $\sum \pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i}$

$$
V=\int_{c}^{d} \pi[g(y)]^{2} d y=\lim _{\|P\| \rightarrow 0} \sum \pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i}
$$

Example
Example 10. Find the volume of the solid shown in the figure below.

2.3 Solid of Revolution: Washer Method

Solid of Revolution About the x-Axis
Cylinder Volume: $\pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}[1 \mathrm{ex}]$ Riemann Sum:

$$
\sum \pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}[1 \mathrm{ex}]
$$

$$
V=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x=\lim _{\|P\| \rightarrow 0} \sum \pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}
$$

Solid of Revolution About the y-Axis

Cylinder Volume: $\pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}[1 \mathrm{ex}]$ Riemann Sum:

$$
\sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}[1 \mathrm{ex}]
$$

$$
V=\int_{c}^{d} \pi\left([F(y)]^{2}-[G(y)]^{2}\right) d y=\lim _{\|P\| \rightarrow 0} \sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}
$$

Example
Example 11. Find the volume of the solid generated by revolving the region between $y=x^{2}$ and $y=2 x$ about the x-axis.

Example
Example 12. Find the volume of the solid generated by revolving the region between $y=x^{2}$ and $y=2 x$ about the y-axis.

