Lecture 22

Section 6.2 Volume by Parallel Cross Section Section 6.3 Volume by the Shell Method

Jiwen He

Department of Mathematics, University of Houston

 ${\tt jiwenhe@math.uh.edu} \\ {\tt math.uh.edu} / {\sim} {\tt jiwenhe} / {\tt Math1431} \\$

Test 3

- Test 3: Dec. 4-6 in CASA
- Material Through 6.3.

Final Exam

• Final Exam: Dec. 14-17 in CASA

Review for Test 3

- Review for Test 3 by the College Success Program.
- Friday, November 21 2:30–3:30pm in the basement of the library by the C-site.

Online Quizzes

• Online Quizzes are available on CourseWare.

Quiz 1

What is today?

- a. Monday
- b. Wednesday
- c. Friday
- d. None of these

Solid of Revolution About the x-Axis: Disk

Cylinder Volume: $\pi[f(x_i^*)]^2 \Delta x_i$ Riemann Sum: $\sum \pi[f(x_i^*)]^2 \Delta x_i$

$$V = \int_{0}^{b} \pi[f(x)]^{2} dx = \lim_{\|P\| \to 0} \sum_{i} \pi[f(x_{i}^{*})]^{2} \Delta x_{i}.$$

Example

Find the volume of the cone shown in the figure below.

Example

Find the volume of a sphere of radius r by revolving about the x-axis the region below the graph of

$$f(x) = \sqrt{r^2 - x^2}, \quad -r \le x \le r.$$

Solid of Revolution About the y-Axis: Disk

Cylinder Volume: $\pi[g(y_i^*)]^2 \Delta y_i$ Riemann Sum: $\sum \pi[g(y_i^*)]^2 \Delta y_i$

$$V = \int_{c}^{d} \pi[g(y)]^{2} dy = \lim_{\|P\| \to 0} \sum \pi[g(y_{i}^{*})]^{2} \Delta y_{i}.$$

Example

Find the volume of the solid shown in the figure below.

Solid of Revolution About the x-Axis: Washer

Cylinder Volume:
$$\pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$$

Riemann Sum: $\sum \pi([f(x_i^*)]^2 - [g(x_i^*)]^2)\Delta x_i$

$$V = \int_{a}^{b} \pi([f(x)]^{2} - [g(x)]^{2}) dx = \lim_{\|P\| \to 0} \sum_{i} \pi([f(x_{i}^{*})]^{2} - [g(x_{i}^{*})]^{2}) \Delta x_{i}$$

Cylinder Volume:
$$\pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$$

Riemann Sum: $\sum \pi([F(y_i^*)]^2 - [G(y_i^*)]^2)\Delta y_i$

$$V = \int_{c}^{d} \pi([F(y)]^{2} - [G(y)]^{2}) \, dy = \lim_{\|P\| \to 0} \sum_{i} \pi([F(y_{i}^{*})]^{2} - [G(y_{i}^{*})]^{2}) \Delta y_{i}$$

Example

Find the volume of the solid generated by revolving the region between $y = x^2$ and y = 2x about the x-axis.

Example

Find the volume of the solid generated by revolving the region between $y = x^2$ and y = 2x about the y-axis.

Volume of a Cylindrical Shell

Volume of a Cylindrical Shell

$$V = \pi R^2 h - \pi r^2 h = \pi h (R + r)(R - r).$$

Solid of Revolution About the y-Axis: Shell

Shell Volume: $2\pi x_i^* f(x_i^*) \Delta x_i$ Riemann Sum: $\sum 2\pi x_i^* f(x_i^*) \Delta x_i$

$$V = \int_{a}^{b} 2\pi x f(x) dx = \lim_{\|P\| \to 0} \sum 2\pi x_{i}^{*} f(x_{i}^{*}) \Delta x_{i}.$$

The integrand $2\pi \times f(x)$ is the lateral area of the cylinder.

Example

Find the volume of the solid generated by revolving about the y-axis the region bounded by $f(x) = 4x - x^2$ and the x-axis between x = 1 and x = 4.

Solid of Revolution About the y-Axis: Shell

$$V = \int_{a}^{b} 2\pi x [f(x) - g(x)] dx = \lim_{\|P\| \to 0} \sum 2\pi x_{i}^{*} [f(x_{i}^{*}) - g(x_{i}^{*})] \Delta x_{i}.$$

The integrand $2\pi x [f(x) - g(x)]$ is the lateral area of the cylinder.

Solid of Revolution About the x-Axis: Shell

$$V = \int_{c}^{d} 2\pi y \left[F(y) - G(y) \right] dy = \lim_{\|P\| \to 0} \sum_{i} 2\pi y_{i}^{*} \left[F(y_{i}^{*}) - G(y_{i}^{*}) \right] \Delta y_{i}.$$

The integrand $2\pi y [F(y) - G(y)]$ is the lateral area of the cylinder.

Example

Find the volume of the solid generated by revolving about the *y*-axis the region between $y = x^2$ and y = 2x.

Example

Find the volume of the solid generated by revolving about the x-axis the region between $y = x^2$ and y = 2x.

Example

A round hole of radius r is drilled through the center of a hemisphere of radius a. Find the volume of the potion of the hemisphere that remains.

Example

The region Ω between $y=\sqrt{x}$ and $y=x^2$, $0 \le x \le 1$, is revolved about the line x=-2. Find the volume of the solid that is generated.

