Lecture 22
 Section 6.2 Volume by Parallel Cross Section Section 6.3 Volume by the Shell Method

Jiwen He
Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Test 3

- Test 3: Dec. 4-6 in CASA
- Material - Through 6.3.

Final Exam

- Final Exam: Dec. 14-17 in CASA

Review for Test 3

- Review for Test 3 by the College Success Program.
- Friday, November 21 2:30-3:30pm in the basement of the library by the C-site.

Online Quizzes

- Online Quizzes are available on CourseWare.

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

Solid of Revolution About the x-Axis: Disk

Cylinder Volume: $\pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i}$ Riemann Sum: $\sum \pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i}$

$$
V=\int_{a}^{b} \pi[f(x)]^{2} d x=\lim _{\|P\| \rightarrow 0} \sum \pi\left[f\left(x_{i}^{*}\right)\right]^{2} \Delta x_{i} .
$$

Example

Example

Find the volume of the cone shown in the figure below.

TI

Example

Example

Find the volume of a sphere of radius r by revolving about the x-axis the region below the graph of

$$
f(x)=\sqrt{r^{2}-x^{2}}, \quad-r \leq x \leq r .
$$

Solid of Revolution About the y-Axis: Disk

Cylinder Volume: $\pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i} \quad$ Riemann Sum: $\sum \pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i}$

$$
V=\int_{c}^{d} \pi[g(y)]^{2} d y=\lim _{\|P\| \rightarrow 0} \sum \pi\left[g\left(y_{i}^{*}\right)\right]^{2} \Delta y_{i} .
$$

Example

Example

Find the volume of the solid shown in the figure below.

Solid of Revolution About the x-Axis: Washer

Cylinder Volume: $\pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}$
Riemann Sum: $\sum \pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}$

Solid of Revolution About the y-Axis: Washer

Cylinder Volume: $\pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}$
Riemann Sum: $\sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}$

$$
V=\int_{c}^{d} \pi\left([F(y)]^{2}-[G(y)]^{2}\right) d y=\lim _{\|P\| \rightarrow 0} \sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{y_{i}}
$$

Example

Example

Find the volume of the solid generated by revolving the region between $y=x^{2}$ and $y=2 x$ about the x-axis.

Example

Example

Find the volume of the solid generated by revolving the region between $y=x^{2}$ and $y=2 x$ about the y-axis.

Volume of a Cylindrical Shell

Volume of a Cylindrical Shell

$$
V=\pi R^{2} h-\pi r^{2} h=\pi h(R+r)(R-r) .
$$

Solid of Revolution About the y-Axis: Shell

Shell Volume: $2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}$ Riemann Sum: $\sum 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}$

$$
V=\int_{a}^{b} 2 \pi x f(x) d x=\lim _{\|P\| \rightarrow 0} \sum 2 \pi x_{i}^{*} f\left(x_{i}^{*}\right) \Delta x_{i}
$$

The integrand $2 \pi x f(x)$ is the lateral area of the cylinder.

Example

Example

Find the volume of the solid generated by revolving about the y-axis the region bounded by $f(x)=4 x-x^{2}$ and the x-axis between $x=1$ and $x=4$.

Solid of Revolution About the y-Axis: Shell

$$
V=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x=\lim _{\|P\| \rightarrow 0} \sum 2 \pi x_{i}^{*}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i} .
$$

The integrand $2 \pi x[f(x)-g(x)]$ is the lateral area of the cylinder.

Solid of Revolution About the x-Axis: Shell

$$
V=\int_{c}^{d} 2 \pi y[F(y)-G(y)] d y=\lim _{\|P\| \rightarrow 0} \sum 2 \pi y_{i}^{*}\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{j} .
$$

The integrand $2 \pi y[F(y)-G(y)]$ is the lateral area of the cylinder.

Example

Example

Find the volume of the solid generated by revolving about the y-axis the region between
$y=x^{2}$ and $y=2 x$.

Example

Example

Find the volume of the solid generated by revolving about the x-axis the region between $y=x^{2}$ and $y=2 x$.

Example

Example

A round hole of radius r is drilled through the center of a hemisphere of radius a. Find the volume of the potion of the hemisphere that remains.

Example

Example

The region Ω between $y=\sqrt{x}$ and $y=x^{2}, 0 \leq x \leq 1$, is revolved about the line $x=-2$. Find the volume of the solid that is generated.

