Test 3 Review

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1431

Test 3

- Test 3: Dec. 4-6 in CASA
- Material - Through 6.3.

No Homework (Thanksgiving)

- No homework this week!
- Have a GREAT Thanksgiving!

Final Exam

- Final Exam: Dec. 14-17 in CASA

You Might Be Interested to Know

- I will replace your lowest test score with the percentage grade from the final exam (provided it is higher).
- I will give an A to anyone who receives 95% or above on the final exam.
- I will give a passing grade to anyone who receives at least 70% on the final exam.

Quiz 1

What is today?
a. Monday
b. Wednesday
c. Friday
d. None of these

Test 3 Material

- Test 3 will cover material from Chapter 5, along with Sections 6.1, 6.2 and 6.3.

Good Sources of Practice Problems

- Examples from class.
- The basic homework problems.
- The basic online quiz problems.

Definite Integral and Lower/Upper Sums

area of shaded region is a lower sum for f

area of shaded region is an
upper sum for f

Area of $\Omega=$ Area of $\Omega_{1}+$ Area of $\Omega_{2}+\cdots+$ Area of Ω_{n},

$$
\begin{aligned}
L_{f}(P) & =m_{1} \Delta x_{1}+m_{2} \Delta x_{2}+\cdots+m_{n} \Delta x_{n} \\
U_{f}(P) & =M_{1} \Delta x_{1}+M_{2} \Delta x_{2}+\cdots+M_{n} \Delta x_{n}
\end{aligned}
$$

$L_{f}(P) \leq \int_{a}^{b} f(x) d x \leq U_{f}(P), \quad$ for all partitions P of $[a, b]$

Problem 1

Give both the upper and lower Riemann sums for the function $f(x)=x^{2}$ over the interval $[1,3]$ with respect to the partition $P=\left\{1, \frac{3}{2}, 2,3\right\}$.

Upper sum

Lower sum

Lower/Upper Sums and Riemann Sums

$$
S^{*}(P)=f\left(x_{1}^{*}\right) \Delta x_{1}+f\left(x_{2}^{*}\right) \Delta x_{2}+\cdots+f\left(x_{n}^{*}\right) \Delta x_{n}
$$

$$
L_{f}(P) \leq S^{*}(P) \leq U_{f}(P), \quad \text { for all partitions } P \text { of }[a, b]
$$

Problem 2

Give the Riemann sums for the function $f(x)=x^{2}$ over the interval $[1,3]$ with respect to the partition $P=\left\{1, \frac{3}{2}, 2,3\right\}$ using midpoints.

Fundamental Theorem of Integral Calculus

Theorem

In general,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a) .
$$

where $F(x)$ is an antiderivative of $f(x)$.

Function	Antiderivative
x^{r}	$\frac{x^{r+1}}{r+1} \quad(r$ a rational number $\neq-1)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sec ^{2} x$	$\tan x$
$\sec ^{2} \tan x$	$\sec x$
$\csc ^{2} x$	$-\cot x$
$\csc x \cot x$	$-\csc x$

Problem 3

Evaluate

1. $\int_{0}^{1}\left(2 x-6 x^{4}+5\right) d x$
2. $\int_{1}^{2} \frac{x^{4}+1}{x^{2}} d x$
3. $\int_{0}^{1}(4-\sqrt{x})^{2} d x$
4. $\int_{0}^{\pi / 4} \sec x(2 \tan x-5 \sec x) d x$

Area below the graph of a Nonnegative f

$f(x) \geq 0 \quad$ for all x in $[a, b]$.
$\Omega=$ region below the graph of f.

$$
\text { Area of } \Omega=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where $F(x)$ is an antiderivative of $f(x)$.

Problem 4

Find the area bounded above by the graph of $f(x)=x^{2}$ and below by the x-axis over the interval $[1,3]$.

Area of the shaded region: $\int_{1}^{3} x^{2} d x=\frac{26}{3}$

Area between the graphs of f and g

$f(x) \geq g(x) \quad$ for all x in $[a, b]$.
$\Omega=$ region between the graphs of f (Top) and g (Bottom).

$$
\text { Area of } \Omega=\int_{a}^{b}[\text { Top - Bottom }] d x=\int_{a}^{b}[f(x)-g(x)] d x .
$$

Problem 5

Find the area between the graphs of $y=4 x$ and $y=x^{3}$ over the interval $[-2,2]$.

$\int_{a}^{b} f(x) d x$ as Signed Area

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x+\int_{d}^{e} f(x) d x+\int_{e}^{b} f(x) d x \\
& =\text { Area of } \Omega_{1}-\text { Area of } \Omega_{2}+\text { Area of } \Omega_{3}-\text { Area of } \Omega_{4} \\
& =\left[\text { Area of } \Omega_{1}+\text { Area of } \Omega_{3}\right]-\left[\text { Area of } \Omega_{2}+\text { Area of } \Omega_{4}\right] \\
& =\text { Area above the } x \text {-axis }- \text { Area below the } x \text {-axis. }
\end{aligned}
$$

Problem 6

The graph of $y=f(x)$ is shown below. The region Ω_{2} has area 3
and $\int_{a}^{c} f(x) d x$ is 2 . Give the area of region Ω_{1}.

Problem 7

- Give the area bounded between the graph of $f(x)=x^{2}-2 x$ and the x-axis on $[-1,3]$.
- Evaluate $\int_{-1}^{3}\left(x^{2}-2 x\right) d x$ and interpret the result in terms of areas.

Indefinite Integral as General Antiderivative

The Indefinite Integral of f

In general,

$$
\int f(x) d x=F(x)+C
$$

where $F(x)$ is any antiderivative of $f(x)$ and C is an arbitrary constant.

$$
\begin{array}{ll}
\int x^{r} d x=\frac{x^{r+1}}{r+1}+C & (r \text { rational, } r \neq-1) \\
\int \sin x d x=-\cos x+C & \int \cos x d x=\sin x+C \\
\int \sec ^{2} x d x=\tan x+C & \int \sec x \tan x d x=\sec x+C \\
\int \csc ^{2} x d x=-\cot x+C & \int \csc x \cot x d x=-\csc x+C
\end{array}
$$

Problem 8

1. Find F given that $F^{\prime}(x)=\cos 3 x$ and $F(-\pi)=1$.
2. Give an antiderivative of $f(x)=\cos 3 x$ whose graph has y-intercept 3.

Undoing the Chain Rule: The u-Substitution

Note: Most differentiation involves the chain rule, so we should expect that most antidifferentiation will involve
undoing the chain rule (the u-Substitution)

If F is an antiderivative for f, then

$$
\begin{aligned}
\frac{d}{d x}[F(u(x))] & =F^{\prime}(u(x)) u^{\prime}(x)=f(u(x)) u^{\prime}(x) \\
\int f(u(x)) u^{\prime}(x) d x & =\int f(u) d u=F(u)+C=F(u(x))+C .
\end{aligned}
$$

The u-Substitution

$$
\begin{array}{ccc}
\text { Original Integral } & \begin{array}{c}
u \\
d u
\end{array}=g^{\prime}(x) d x & \text { New Integral } \\
\iint[g(x)]^{r} g^{\prime}(x) d x & & \\
\int \sin [g(x)] g^{\prime}(x) d x & & \int u^{r} d u=\frac{u^{r+1}}{r+1}+C=\frac{[g(x)]^{r+1}}{r+1}+C \quad(r \neq-1) \\
\int \cos [g(x)] g^{\prime}(x) d x & \rightarrow & \int \cos u d u=-\cos u+C=-\cos [g(x)]+C \\
\int \sec ^{2}[g(x)] g^{\prime}(x) d x & \rightarrow & \int \sec ^{2} u d u=\sin u+C=\sin [g(x)]+C \\
\int \sec [g(x)] \tan [g(x)] g^{\prime}(x) d x & \rightarrow & \int \sec u \tan u d u=\sec u+C=\sec [g(x)]+C \\
\int \csc ^{2}[g(x)] g^{\prime}(x) d x & \rightarrow & \int \csc ^{2} u d u=-\cot u+C=-\cot [g(x)]+C \\
\int \csc [g(x)] \cot [g(x)] g^{\prime}(x) d x & \rightarrow & \int \csc u \cot u d u=-\csc u+C=-\csc [g(x)]+C \\
\hline
\end{array}
$$

Problem 9

Calculate

1. $\int \sin x \cos x d x$
2. $\int 2 x^{3} \sec ^{2}\left(x^{4}+1\right) d x$
3. $\int \sec ^{3} x \tan x d x$
4. $\int x(x-3)^{5} d x$

Substitution in Definite Integrals

The Change of Variables Formula

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u .
$$

We change the limits of integration to reflect the substitution.

Problem 10

Evaluate

1. $\int_{0}^{2}\left(x^{2}-1\right)\left(x^{3}-3 x+2\right)^{3} d x$
2. $\int_{0}^{1 / 2} \cos ^{3} \pi x \sin \pi x d x$
3. $\int_{0}^{\sqrt{3}} x^{5} \sqrt{x^{2}+1} d x$

Definite Integral and Antiderivative

$F(x)=$ area from a to x and $F(x+h)=$ area from a to $x+h$.
Therefore $F(x+h)-F(x)=$ area from x to $x+h \cong f(x) h$ if h is small and

$$
\begin{aligned}
& \frac{F(x+h)-F(x)}{h} \cong \frac{f(x) h}{h}=f(x) \\
& \frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
\end{aligned}
$$

Problem 11

1. Find $f(x)$ such that $\int_{-2}^{x} f(t) d t=\cos (2 x)+1$.
2. Give the function $f(x)$ that solves the equation $\int_{2}^{x}(t+1) f(t) d t=\sin (x)$.

Properties

$$
\begin{aligned}
& \frac{d}{d x}\left(\int_{a}^{u} f(t) d t\right)=f(u) \frac{d u}{d x} \\
& \frac{d}{d x}\left(\int_{v}^{b} f(t) d t\right)=-f(v) \frac{d v}{d x} \\
& \frac{d}{d x}\left(\int_{v}^{u} f(t) d t\right)=f(u) \frac{d u}{d x}-f(v) \frac{d v}{d x}
\end{aligned}
$$

Problem 12

Find

1. $\frac{d}{d x}\left(\int_{0}^{x^{3}} \frac{d t}{1+t}\right)$
2. $\frac{d}{d x}\left(\int_{-3}^{x^{2}}\left(3 t-\sin \left(t^{2}\right)\right) d t\right)$
3. $\frac{d}{d x}\left(\int_{x}^{2 x} \frac{d t}{1+t^{2}}\right)$

Mean-Value Theorems for Integrals

Let $f_{\text {avg }}$ denote the average or mean value of f on $[a, b]$. Then

$$
f_{\mathrm{avg}}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

The First Mean-Value Theorems for Integrals

If f is continous on $[a, b]$, then there is at least one number c in (a, b) for which

$$
f(c)=f_{\text {avg }} .
$$

Problem 13

Give the average value of the function $f(x)=\sin x$ on the interval $[0, \pi / 2]$.

Problem 14

Give the value of c that satisfies the conclusion of the mean value theorem for integrals for the function $f(x)=x^{2}-2 x+3$ on the interval [1, 4].

Area by Integration with Respect to $x: f(x) \geq g(x)$

Rectangle Area

$$
\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i}
$$

$$
\operatorname{area}(\Omega)=\int_{a}^{b}[f(x)-g(x)] d x=\lim _{\|P\| \rightarrow 0} \sum\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i} .
$$

Area by Integration with Respect to $y: F(y) \geq G(y)$

Rectangle Area
$\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{i}$

$$
\begin{equation*}
\operatorname{area}(\Omega)=\int_{c}^{d}[F(y)-G(y)] d y=\lim _{\|P\| \rightarrow 0} \sum\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{i} \tag{4}
\end{equation*}
$$

Problem 15

Give a formula involving integral(s) in x for the region bounded by $y=x-2$ and $y=\sqrt{x}$.

Problem 16

Give a formula involving integral(s) in y for the region bounded by $y=x-2$ and $y=\sqrt{x}$.

Solid of Revolution About the x-Axis: Washer

Cylinder Volume: $\pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}$
Riemann Sum: $\sum \pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}$

$V=\int_{a}^{b} \pi\left([f(x)]^{2}-[g(x)]^{2}\right) d x=\lim _{\|P\| \rightarrow 0} \sum \pi\left(\left[f\left(x_{i}^{*}\right)\right]^{2}-\left[g\left(x_{i}^{*}\right)\right]^{2}\right) \Delta x_{i}| | \mid$

Solid of Revolution About the x-Axis: Shell

$$
V=\int_{c}^{d} 2 \pi y[F(y)-G(y)] d y=\lim _{\|P\| \rightarrow 0} \sum 2 \pi y_{i}^{*}\left[F\left(y_{i}^{*}\right)-G\left(y_{i}^{*}\right)\right] \Delta y_{j} \text {. }
$$

The integrand $2 \pi y[F(y)-G(y)]$ is the lateral area of the cylinder.

Problem 17

The region bounded by $y=x^{2}$ and $y=2 x$ is rotated around the x-axis. Give a formula involving integrals in x for the volume of the solid that is generated.

Problem 18

The region bounded by $y=x^{2}$ and $y=2 x$ is rotated around the x-axis. Give a formula involving integrals in y for the volume of the solid that is generated.

Solid of Revolution About the y-Axis: Washer

Cylinder Volume: $\pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}$
Riemann Sum: $\sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}$

$$
V=\int_{c}^{d} \pi\left([F(y)]^{2}-[G(y)]^{2}\right) d y=\lim _{\|P\| \rightarrow 0} \sum \pi\left(\left[F\left(y_{i}^{*}\right)\right]^{2}-\left[G\left(y_{i}^{*}\right)\right]^{2}\right) \Delta y_{i}
$$

Solid of Revolution About the y-Axis: Shell

$$
V=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x=\lim _{\|P\| \rightarrow 0} \sum 2 \pi x_{i}^{*}\left[f\left(x_{i}^{*}\right)-g\left(x_{i}^{*}\right)\right] \Delta x_{i} .
$$

The integrand $2 \pi x[f(x)-g(x)]$ is the lateral area of the cylinder.

Problem 19

The region bounded by $y=x^{2}$ and $y=2 x$ is rotated around the y-axis. Give a formula involving integrals in y for the volume of the solid that is generated.

Problem 20

The region bounded by $y=x^{2}$ and $y=2 x$ is rotated around the y-axis. Give a formula involving integrals in x for the volume of the solid that is generated.

