Lecture 1
 Section 7.1 One-To-One Functions; Inverses

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
math.uh.edu/~jiwenhe/Math1432

What are One-To-One Functions? Geometric Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Horizontal Line Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

What are One-To-One Functions? Geometric Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Horizontal Line Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

What are One-To-One Functions? Geometric Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Horizontal Line Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

What are One-To-One Functions? Algebraic Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Definition

A function f is said to be one-to-one (or injective) if

$$
f^{\prime}\left(x_{1}\right)=f^{\prime}\left(x_{2}\right) \text { implies } x_{1}=x_{2}
$$

What are One-To-One Functions? Algebraic Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Definition

A function f is said to be one-to-one (or injective) if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \quad \text { implies } \quad x_{1}=x_{2} .
$$

Lemma
The function f is one-to-one if and only if

$$
\forall x_{1}, \forall x_{2}, x_{1} \neq x_{2} \quad \text { implies } \quad f\left(x_{1}\right) \neq f\left(x_{2}\right) \text {. }
$$

What are One-To-One Functions? Algebraic Test

f is not one-to-one: $\quad f\left(x_{1}\right)=f\left(x_{2}\right)$

f is one-to-one:

Definition

A function f is said to be one-to-one (or injective) if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies } \quad x_{1}=x_{2} .
$$

Lemma

The function f is one-to-one if and only if

$$
\forall x_{1}, \forall x_{2}, x_{1} \neq x_{2} \text { implies } f\left(x_{1}\right) \neq f\left(x_{2}\right) \text {. }
$$

Examples and Counter-Examples

Examples

- $f(x)=3 x-5$ is 1-to- 1 .

Proof.

Examples and Counter-Examples

Examples

- $f(x)=3 x-5$ is 1-to- 1 .

Proof.

- $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow 3 x_{1}-5=3 x_{2}-5 \quad \Rightarrow \quad x_{1}=x_{2}$.

Examples and Counter-Examples

Examples

- $f(x)=3 x-5$ is 1-to- 1 .
- $f(x)=x^{2}$ is not 1-to- 1 .

Proof.

- In general, $f(x)=a x-b, a \neq 0$, is 1-to-1.

Examples and Counter-Examples

Examples

$$
f(x)=x^{2} \text { is not 1-to- } 1
$$

Proof.

Examples and Counter-Examples

Examples

$$
f(x)=x^{2} \text { is not 1-to- } 1
$$

Proof.

- $f(1)=(1)^{2}=1=(-1)^{2}=f(-1)$.

Examples and Counter-Examples

Examples

$$
f(x)=x^{2} \text { is not 1-to-1 }
$$

- $f(x)=x^{3}$ is 1-to-1.

Proof.

- In general, $f(x)=x^{n}, n$ even, is not 1-to-1.

Examples and Counter-Examples

Examples

- $f(x)=x^{3}$ is 1 -to- 1 .

Proof.

Examples and Counter-Examples

Examples

$$
f(x)=x^{3} \text { is 1-to- } 1
$$

Proof.

$$
\text { - } f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad x_{1}^{3}=x_{2}^{3} \quad \Rightarrow \quad x_{1}=x_{2}
$$

Examples and Counter-Examples

Examples

- $f(x)=x^{3}$ is 1 -to- 1 .
- $f(x)=\frac{1}{x}$ is 1 -to- 1 .

Proof.

- In general, $f(x)=x^{n}, n$ odd, is 1-to-1.

Examples and Counter-Examples

Examples

- $f(x)=\frac{1}{x}$ is 1 -to- 1 .

Proof.

Examples and Counter-Examples

Examples

$$
f(x)=\frac{1}{x} \text { is } 1 \text {-to- } 1
$$

Proof.

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad \frac{1}{x_{1}}=\frac{1}{x_{2}} \quad \Rightarrow \quad x_{1}=x_{2} .
$$

Examples and Counter-Examples

Examples

- $f(x)=\frac{1}{x}$ is 1 -to- 1 .
- $f(x)=x^{n}-x, n>0$, is not 1-to-1.

Proof.

- In general, $f(x)=x^{-n}, n$ odd, is 1-to-1.

Examples and Counter-Examples

Examples

$$
f(x)=x^{n}-x, n>0, \text { is not 1-to-1. }
$$

Proof.

Examples and Counter-Examples

Examples

$$
f(x)=x^{n}-x, n>0, \text { is not 1-to-1. }
$$

Proof.

$$
\text { - } f(0)=0^{n}-0=0=(1)^{n}-1=f(1) .
$$

Examples and Counter-Examples

Examples

$$
f(x)=x^{n}-x, n>0, \text { is not 1-to-1. }
$$

Proof.

- In general, 1-to-1 of f and g does not always imply 1-to-1 of $f+g$.

Properties

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Examples

$$
g(u)=3 u-5 \text { and } u(x)=x^{3} \text { are one-to-one. }
$$

Properties

Properties

If f and g are one－to－one，then $f \circ g$ is one－to－one．

Proof．

$$
\begin{aligned}
& f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) \quad \Rightarrow \quad f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right) \quad \Rightarrow \quad g\left(x_{1}\right)= \\
& g\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

Examples

```
- f(x)=3\mp@subsup{x}{}{3}-5\mathrm{ is one-to-one, since }f=g\circu\mathrm{ where}
g(u)=3u-5 and u(x)=\mp@subsup{x}{}{3}}\mathrm{ are one-to-one.
f(x)=(3x-5\mp@subsup{)}{}{3}\mathrm{ is one-to-one since }f=g\mathrm{ o u where}
g ( u ) = u ^ { 3 } \text { and } u ( x ) = 3 x - 5 ~ a r e ~ o n e - t o - o n e
```


Properties

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$
\begin{aligned}
& f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) \quad \Rightarrow \quad f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right) \quad \Rightarrow \quad g\left(x_{1}\right)= \\
& g\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

Examples

- $f(x)=3 x^{3}-5$ is one-to-one, since $f=g \circ u$ where $g(u)=3 u-5$ and $u(x)=x^{3}$ are one-to-one.
- $f(x)=(3 x-5)^{3}$ is one-to-one, since $f=g \circ u$ where $g(u)=u^{3}$ and $u(x)=3 x-5$ are one-to-one. $f(x)=\frac{1}{3 x^{3}-5}$ is one-to-one, since $f=g \circ u$ where $g(u)=\frac{1}{u}$ and $u(x)=3 x^{3}-5$ are one-to-one

Properties

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$
\begin{aligned}
& f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) \quad \Rightarrow \quad f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right) \quad \Rightarrow \quad g\left(x_{1}\right)= \\
& g\left(x_{2}\right) \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

Examples

- $f(x)=3 x^{3}-5$ is one-to-one, since $f=g \circ u$ where $g(u)=3 u-5$ and $u(x)=x^{3}$ are one-to-one.
- $f(x)=(3 x-5)^{3}$ is one-to-one, since $f=g \circ u$ where $g(u)=u^{3}$ and $u(x)=3 x-5$ are one-to-one.

and $u(x)=3 x^{3}-5$ are one-to-one.

Properties

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$
\begin{aligned}
& f \circ g\left(x_{1}\right)=f \circ g\left(x_{2}\right) \quad \Rightarrow \quad f\left(g\left(x_{1}\right)\right)=f\left(g\left(x_{2}\right)\right) \quad \Rightarrow \quad g\left(x_{1}\right)= \\
& g\left(x_{2}\right) \Rightarrow \quad x_{1}=x_{2} .
\end{aligned}
$$

Examples

- $f(x)=3 x^{3}-5$ is one-to-one, since $f=g \circ u$ where $g(u)=3 u-5$ and $u(x)=x^{3}$ are one-to-one.
- $f(x)=(3 x-5)^{3}$ is one-to-one, since $f=g \circ u$ where $g(u)=u^{3}$ and $u(x)=3 x-5$ are one-to-one.
- $f(x)=\frac{1}{3 x^{3}-5}$ is one-to-one, since $f=g \circ u$ where $g(u)=\frac{1}{u}$ and $u(x)=3 x^{3}-5$ are one-to-one.

Increasing/Decreasing Functions and One-To-Oneness

Definition

- A function f is (strictly) increasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)<f\left(x_{2}\right) .
$$

- A function f is (strictly) decreasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \text { implies } f\left(x_{1}\right)>f\left(x_{2}\right) \text {. }
$$

Functions that are increasing or decreasing are one-to-one

Increasing/Decreasing Functions and One-To-Oneness

Definition

- A function f is (strictly) increasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)<f\left(x_{2}\right) .
$$

- A function f is (strictly) decreasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)>f\left(x_{2}\right) .
$$

Theorem

Functions that are increasing or decreasing are one-to-one

Increasing/Decreasing Functions and One-To-Oneness

Definition

- A function f is (strictly) increasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)<f\left(x_{2}\right) .
$$

- A function f is (strictly) decreasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)>f\left(x_{2}\right) .
$$

Theorem

Functions that are increasing or decreasing are one-to-one.
\square
For $x_{1} \neq x_{2}$, either $x_{1}<x_{2}$ or $x_{1}>x_{2}$ ans so, by monotonicity, either $f\left(x_{1}\right)<f\left(x_{2}\right)$ or $f\left(x_{1}\right)>f\left(x_{2}\right)$, thus $f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Increasing/Decreasing Functions and One-To-Oneness

Definition

- A function f is (strictly) increasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)<f\left(x_{2}\right) .
$$

- A function f is (strictly) decreasing if

$$
\forall x_{1}, \forall x_{2}, x_{1}<x_{2} \quad \text { implies } \quad f\left(x_{1}\right)>f\left(x_{2}\right) .
$$

Theorem

Functions that are increasing or decreasing are one-to-one.

Proof.

For $x_{1} \neq x_{2}$, either $x_{1}<x_{2}$ or $x_{1}>x_{2}$ ans so, by monotonicity, either $f\left(x_{1}\right)<f\left(x_{2}\right)$ or $f\left(x_{1}\right)>f\left(x_{2}\right)$, thus $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

Sign of the Derivative Test for One-To-Oneness

Theorem

- If $f^{\prime}(x)>0$ for all x, then f is increasing, thus one-to-one. - If $f^{\prime}(x)<0$ for all x, then f is decreasing, thus one-to-one.

Examples

Sign of the Derivative Test for One-To-Oneness

Theorem

- If $f^{\prime}(x)>0$ for all x, then f is increasing, thus one-to-one.
- If $f^{\prime}(x)<0$ for all x, then f is decreasing, thus one-to-one.

Examples

- $f(x)=x^{3}+\frac{1}{2} x$ is one-to-one, since

Sign of the Derivative Test for One-To-Oneness

Theorem

- If $f^{\prime}(x)>0$ for all x, then f is increasing, thus one-to-one.
- If $f^{\prime}(x)<0$ for all x, then f is decreasing, thus one-to-one.

Examples

- $f(x)=x^{3}+\frac{1}{2} x$ is one-to-one, since

$$
f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0 \quad \text { for all } x
$$

- $f(x)=-x^{5}-2 x^{3}-2 x$ is one-to-one, since
$f(x)=x-\pi+\cos x$ is one-to-one, since
and

Sign of the Derivative Test for One-To-Oneness

Theorem

- If $f^{\prime}(x)>0$ for all x, then f is increasing, thus one-to-one.
- If $f^{\prime}(x)<0$ for all x, then f is decreasing, thus one-to-one.

Examples

- $f(x)=x^{3}+\frac{1}{2} x$ is one-to-one, since
- $f(x)=-x^{5}-2 x^{3}-2 x$ is one-to-one, since $f^{\prime}(x)=-5 x^{4}-6 x^{2}-2<0 \quad$ for all x.
- $f(x)=x-\pi+\cos x$ is one-to-one, since

and

$$
f^{\prime}(x)=0 \quad \text { only at } x=\frac{\pi}{2}+2 k \pi .
$$

Sign of the Derivative Test for One-To-Oneness

Theorem

- If $f^{\prime}(x)>0$ for all x, then f is increasing, thus one-to-one.
- If $f^{\prime}(x)<0$ for all x, then f is decreasing, thus one-to-one.

Examples

- $f(x)=-x^{5}-2 x^{3}-2 x$ is one-to-one, since

- $f(x)=x-\pi+\cos x$ is one-to-one, since

$$
f^{\prime}(x)=1-\sin x \geq 0
$$

and

$$
f^{\prime}(x)=0 \quad \text { only at } x=\frac{\pi}{2}+2 k \pi .
$$

What are Inverse Functions?

Definition

Let f be a one-to-one function. The inverse of f, denoted by f^{-1}, is the unique function with domain equal to the range of f that satisfies

$$
f\left(f^{-1}(x)\right)=x \quad \text { for all } x \text { in the range of } f
$$

Warning

DON'T Confuse f^{-1} with the reciprocal of f, that is, with $1 / f$
The " -1 " in the notation for the inverse of f is not an exponent;
$f^{-1}(x)$ does not mean $1 / f(x)$

What are Inverse Functions?

Definition

Let f be a one-to-one function. The inverse of f, denoted by f^{-1}, is the unique function with domain equal to the range of f that satisfies

$$
f\left(f^{-1}(x)\right)=x \quad \text { for all } x \text { in the range of } f
$$

Warning

DON'T Confuse f^{-1} with the reciprocal of f, that is, with $1 / f$.
The " -1 " in the notation for the inverse of f is not an exponent; $f^{-1}(x)$ does not mean $1 / f(x)$.

Example

Example

$$
\text { - } f(x)=x^{3} \quad \Rightarrow \quad f^{-1}(x)=x^{1 / 3}
$$

Proof.

- By definition, f^{-1} satisfies the equation
- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y

Example

$$
\begin{aligned}
& \text { Example } \\
& \text { - } f(x)=x^{3} \quad \Rightarrow f^{-1}(x)=x^{1 / 3} .
\end{aligned}
$$

Proof.

- By definition, f^{-1} satisfies the equation

$$
f\left(f^{-1}(x)\right)=x \quad \text { for all } x .
$$

- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :
- Substitute $f^{-1}(x)$ back in for y,

Example

Example

- $f(x)=x^{3} \Rightarrow f^{-1}(x)=x^{1 / 3}$.

Proof.

- By definition, f^{-1} satisfies the equation

$$
f\left(f^{-1}(x)\right)=x \quad \text { for all } x
$$

- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :

$$
f(y)=x \quad \Rightarrow \quad y^{3}=x \quad \Rightarrow \quad y=x^{1 / 3} .
$$

- Substitute $f^{-1}(x)$ back in for y,

Example

Example

- $f(x)=x^{3} \Rightarrow f^{-1}(x)=x^{1 / 3}$.

Proof.

- By definition, f^{-1} satisfies the equation

$$
f\left(f^{-1}(x)\right)=x \quad \text { for all } x
$$

- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :

$$
f(y)=x \quad \Rightarrow \quad y^{3}=x \quad \Rightarrow \quad y=x^{1 / 3}
$$

- Substitute $f^{-1}(x)$ back in for y,

$$
f^{-1}(x)=x^{1 / 3}
$$

Example

Example

$$
\text { - } f(x)=x^{3} \Rightarrow f^{-1}(x)=x^{1 / 3}
$$

In general,

$$
f(x)=x^{n}, n \text { odd, } \quad \Rightarrow \quad f^{-1}(x)=x^{1 / n} .
$$

Example

Example

$$
\text { - } f(x)=3 x-5 \Rightarrow f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} .
$$

Proof.

- By definition, f^{-1} satisfies $f\left(f^{-1}(x)\right)=x, \forall x$. - Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y

Example

Example

$$
\text { - } f(x)=3 x-5 \Rightarrow f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} .
$$

Proof.

- By definition, f^{-1} satisfies $f\left(f^{-1}(x)\right)=x, \forall x$.
- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :
- Substitute $f^{-1}(x)$ back in for y,

Example

Example

$$
\text { - } f(x)=3 x-5 \Rightarrow f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} .
$$

Proof.

- By definition, f^{-1} satisfies $f\left(f^{-1}(x)\right)=x, \forall x$.
- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :

$$
f(y)=x \quad \Rightarrow \quad 3 y-5=x \quad \Rightarrow \quad y=\frac{1}{3} x+\frac{5}{3} .
$$

- Substitute $f^{-1}(x)$ back in for y,

Example

Example

$$
\text { - } f(x)=3 x-5 \Rightarrow f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} .
$$

Proof.

- By definition, f^{-1} satisfies $f\left(f^{-1}(x)\right)=x, \forall x$.
- Set $y=f^{-1}(x)$ and solve $f(y)=x$ for y :

$$
f(y)=x \quad \Rightarrow \quad 3 y-5=x \quad \Rightarrow \quad y=\frac{1}{3} x+\frac{5}{3} .
$$

- Substitute $f^{-1}(x)$ back in for y,

$$
f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} .
$$

Example

$$
\begin{aligned}
& \text { Example } \\
& \text { - } f(x)=3 x-5 \quad \Rightarrow \quad f^{-1}(x)=\frac{1}{3} x+\frac{5}{3} \text {. }
\end{aligned}
$$

In general,

$$
f(x)=a x+b, a \neq 0, \quad \Rightarrow \quad f^{-1}(x)=\frac{1}{a} x-\frac{b}{a} .
$$

Undone Properties

Theorem

$f \circ f^{-1}=\operatorname{ld}_{\mathcal{R}(f)} \quad$ By definition, f^{-1} satisfies
$\mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f) \quad f\left(f^{-1}(x)\right)=x \quad$ for all x in the range of f.

$$
f^{-1} \circ f=\operatorname{Id}_{\mathcal{D}(f)}
$$

Proof.

$$
\mathcal{R}\left(f^{-1}\right)=\mathcal{D}(f)
$$

Undone Properties

Theorem

$f \circ f^{-1}=\operatorname{ld}_{\mathcal{R}(f)} \quad$ By definition, f^{-1} satisfies
$\mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f) \quad f\left(f^{-1}(x)\right)=x \quad$ for all x in the range of f.

It is also true that

$$
f^{-1}(f(x))=x \quad \text { for all } x \text { in the domain of } f .
$$

$$
f^{-1} \circ f=\operatorname{ld}_{\mathcal{D}(f)}
$$

Proof.

$$
\mathcal{R}\left(f^{-1}\right)=\mathcal{D}(f)
$$

$$
\forall x \in \mathcal{D}(f) \text {, set } y=f(x) \text {. Since } y \in \mathcal{R}(f)
$$

Undone Properties

Theorem

$f \circ f^{-1}=\operatorname{ld}_{\mathcal{R}(f)} \quad$ By definition, f^{-1} satisfies
$\mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f) \quad f\left(f^{-1}(x)\right)=x \quad$ for all x in the range of f.

It is also true that

$$
f^{-1}(f(x))=x \quad \text { for all } x \text { in the domain of } f .
$$

$$
f^{-1} \circ f=\operatorname{ld}_{\mathcal{D}(f)}
$$

Proof.

$$
\mathcal{R}\left(f^{-1}\right)=\mathcal{D}(f)
$$

$$
\forall x \in \mathcal{D}(f) \text {, set } y=f(x) . \text { Since } y \in \mathcal{R}(f)
$$

$$
f\left(f^{-1}(y)\right)=y \quad \Rightarrow \quad f\left(f^{-1}(f(x))\right)=f(x) .
$$

- f being one-to-one implies $\left.f^{-1}(f(x))\right)=x$.

Undone Properties

Theorem

$f \circ f^{-1}=\operatorname{ld}_{\mathcal{R}(f)} \quad$ By definition, f^{-1} satisfies
$\mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f) \quad f\left(f^{-1}(x)\right)=x \quad$ for all x in the range of f.

It is also true that

$$
f^{-1}(f(x))=x \quad \text { for all } x \text { in the domain of } f .
$$

$$
f^{-1} \circ f=\operatorname{ld}_{\mathcal{D}(f)}
$$

Proof.

$$
\mathcal{R}\left(f^{-1}\right)=\mathcal{D}(f)
$$

$$
\forall x \in \mathcal{D}(f) \text {, set } y=f(x) . \text { Since } y \in \mathcal{R}(f)
$$

$$
f\left(f^{-1}(y)\right)=y \quad \Rightarrow \quad f\left(f^{-1}(f(x))\right)=f(x)
$$

- f being one-to-one implies $\left.f^{-1}(f(x))\right)=x$.

Graphs of f and f^{-1}

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line $y=x$.

Example

Given the graph of f, sketch the graph of f^{-1}

Solution

First draw the line $y=x$. Then reflect the graph of f in that line

Graphs of f and f^{-1}

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line $y=x$.

Example

Given the graph of f, sketch the graph of f^{-1}.

Solution

First draw the line $y=x$. Then reflect the graph of f in that line.

Graphs of f and f^{-1}

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line $y=x$.

Example

Given the graph of f, sketch the graph of f^{-1}.

Solution

First draw the line $y=x$. Then reflect the graph of f in that line.

f is continuous

Graphs of f and f^{-1}

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line $y=x$.

Example

Given the graph of f, sketch the graph of f^{-1}.

Solution

First draw the line $y=x$. Then reflect the graph of f in that line.

Corollary
f is continuous \Rightarrow so is f^{-1}.

Differentiability of Inverses

Theorem

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, \quad f^{\prime}(x) \neq 0, y=f(x) .
$$

Proof.

$$
f^{-1}(f(x))=x \quad \Rightarrow \quad \frac{d}{d x} f^{-1}(f(x))=\left(f^{-1}\right)^{\prime}(f(x)) f^{\prime}(x)=1
$$

\square

- If $f^{\prime}(x) \neq 0$, then

Differentiability of Inverses

Theorem

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, \quad f^{\prime}(x) \neq 0, \quad y=f(x)
$$

Proof.

- $\forall y \in \mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f), \exists x \in \mathcal{D}(f)$ s.t. $y=f(x)$. By definition,

$$
f^{-1}(f(x))=x \quad \Rightarrow \quad \frac{d}{d x} f^{-1}(f(x))=\left(f^{-1}\right)^{\prime}(f(x)) f^{\prime}(x)=1
$$

- If $f^{\prime}(x) \neq 0$, then

Differentiability of Inverses

Theorem

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, \quad f^{\prime}(x) \neq 0, \quad y=f(x)
$$

Proof.

- $\forall y \in \mathcal{D}\left(f^{-1}\right)=\mathcal{R}(f), \exists x \in \mathcal{D}(f)$ s.t. $y=f(x)$. By definition,

$$
f^{-1}(f(x))=x \quad \Rightarrow \quad \frac{d}{d x} f^{-1}(f(x))=\left(f^{-1}\right)^{\prime}(f(x)) f^{\prime}(x)=1
$$

- If $f^{\prime}(x) \neq 0$, then

$$
\left(f^{-1}\right)^{\prime}(f(x))=\frac{1}{f^{\prime}(x)} \quad \Rightarrow \quad\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)} .
$$

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Solution

- Note that $f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0$, thus f is one-to-one. - Note that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, y=f(x)$

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Solution

- Note that $f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0$, thus f is one-to-one.
- Note that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, y=f(x)$
- To calculate $\left(f^{-1}\right)^{\prime}(y)$ at $y=9$, find a number x s.t.
\square Since $+(2)=3(2)+\frac{2}{2}$ 苗

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Solution

- Note that $f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0$, thus f is one-to-one.
- Note that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, y=f(x)$.
- To calculate $\left(f^{-1}\right)^{\prime}(y)$ at $y=9$, find a number x s.t. $f(x)=9$

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Solution

- Note that $f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0$, thus f is one-to-one.
- Note that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, y=f(x)$.
- To calculate $\left(f^{-1}\right)^{\prime}(y)$ at $y=9$, find a number x s.t. $f(x)=9$:

$$
f(x)=9 \quad \Rightarrow \quad x^{3}+\frac{1}{2} x=9 \quad \Rightarrow \quad x=2
$$

- Since $f^{\prime}(2)=3(2)^{2}+\frac{1}{2}=\frac{25}{2}$, then $\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}(2)}=\frac{2}{25}$.

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Solution

- Note that $f^{\prime}(x)=3 x^{2}+\frac{1}{2}>0$, thus f is one-to-one.
- Note that $\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, y=f(x)$.
- To calculate $\left(f^{-1}\right)^{\prime}(y)$ at $y=9$, find a number x s.t. $f(x)=9$:

$$
f(x)=9 \quad \Rightarrow \quad x^{3}+\frac{1}{2} x=9 \quad \Rightarrow \quad x=2
$$

- Since $f^{\prime}(2)=3(2)^{2}+\frac{1}{2}=\frac{25}{2}$, then $\left(f^{-1}\right)^{\prime}(9)=\frac{1}{f^{\prime}(2)}=\frac{2}{25}$.

Example

Example

Let $f(x)=x^{3}+\frac{1}{2} x$. Calculate $\left(f^{-1}\right)^{\prime}(9)$.

Note that to calculate $\left(f^{-1}\right)^{\prime}(y)$ at a specific y using

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}(x)}, \quad f^{\prime}(x) \neq 0, \quad y=f(x)
$$

we only need the value of x s.t. $f(x)=y$, not the inverse function f^{-1}, which may not be known explicitly.

Daily Grades

Daily Grades

1. $f(x)=x, f^{-1}(x)=?:$
(a) not exist, (b) x,
(c) $\frac{1}{x}$.
2. $f(x)=x^{3}, f^{-1}(x)=$? :
(a) not exist,
(b) $x^{\frac{1}{3}}$,
(c) $\frac{1}{x^{3}}$.
3. $f(x)=x^{2}, f^{-1}(x)=$? :
(a) not exist,
(b) $x^{\frac{1}{2}}$,
(c) $\frac{1}{x^{2}}$.
4. $f(x)=3 x-3,\left(f^{-1}\right)^{\prime}(1)=$? :
(a) not exist,
(b) 3 ,
(c) $\frac{1}{3}$.

Outline

- One-To-One Functions
- Definition of the One-To-One Functions
- Properties of One-To-One Functions
- Increasing/Decreasing Functions and One-To-Oneness
- Inverse Functions
- Definition of Inverse Functions
- Properties of Inverse Functions
- Differentiability of Inverses

