Lecture 1

Section 7.1 One-To-One Functions; Inverses

Jiwen He

Department of Mathematics, University of Houston

Jiwen He, University of Houston

One-To-One Functions Inverses

Definition Properties Monoton

What are One-To-One Functions? Geometric Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

One-To-One Functions Inverses

finition Properties Monotoni

What are One-To-One Functions? Geometric Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

< 🗇 🕨 <

One-To-One Functions Inverses

finition Properties Monotoni

What are One-To-One Functions? Geometric Test

Horizontal Line Test

- If some horizontal line intersects the graph of the function more than once, then the function is not one-to-one.
- If no horizontal line intersects the graph of the function more than once, then the function is one-to-one.

2 / 16

What are One-To-One Functions? Algebraic Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

What are One-To-One Functions? Algebraic Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

What are One-To-One Functions? Algebraic Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

Examples

- f(x) = 3x 5 is 1-to-1.
- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof.

-	
•	
•	
•	
●	h

イロト 人間ト イヨト イヨト

Examples

- f(x) = 3x 5 is 1-to-1.
- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof.

•
$$f(x_1) = f(x_2) \Rightarrow 3x_1 - 5 = 3x_2 - 5 \Rightarrow x_1 = x_2.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

January 15, 2008 4

イロト イポト イヨト イヨト

F / TP

Examples

- f(x) = 3x 5 is 1-to-1.
- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof.

• In general, f(x) = ax - b, $a \neq 0$, is 1-to-1.

イロト イポト イヨト イヨト

Examples

- $f(x) = x^2$ is not 1-to-1.

Proof. H

3

Examples

- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
 - $f(x) = x^n x$, n > 0, is not 1-to-1

Proof.

•
$$f(1) = (1)^2 = 1 = (-1)^2 = f(-1).$$

Jiwen He, University of Houston

January 15, 2008 4

< 回 ト < 三 ト < 三 ト

Examples

•
$$f(x) = x^2$$
 is not 1-to-1.

- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1
 - $f(x) = x^n x$, n > 0, is not 1-to-1

Proof.

- 4 同 6 4 日 6 4 日 6

Ш

Examples

- f(x) = 3x 5 is 1-to-1
- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof.

0	
0	时

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

lanuary 15, 2008 4

イロト 人間ト イヨト イヨト

| / 16

Examples

Proof.

• $f(x_1) = f(x_2) \Rightarrow x_1^3 = x_2^3 \Rightarrow x_1 = x_2.$

3

イロト 人間ト イヨト イヨト

Examples

▲ 同 ▶ → 三 ▶

Examples

- f(x) = 3x 5 is 1-to-1
- $f(x) = x^2$ is not 1-to-1.
- $f(x) = x^3$ is 1-to-1.
- $f(x) = \frac{1}{x}$ is 1-to-1.
- $f(x) = x^n x$, n > 0, is not 1-to-1.

Proof.

•	
•	

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

anuary 15, 2008 4

- (目) - (日) - (日)

4 / 16

Examples

Jiwen He, University of Houston

Examples

Jiwen He, University of Houston

Examples

•
$$f(x) = x^n - x$$
, $n > 0$, is not 1-to-1.

Proof.

Jiwen He, University of Houston

< (T) > <

э

Examples

•
$$f(x) = x^n - x$$
, $n > 0$, is not 1-to-1.

Proof.

•
$$f(0) = 0^n - 0 = 0 = (1)^n - 1 = f(1).$$

э

イロト イポト イヨト イヨト

Examples • $f(x) = x^n - x$, n > 0, is not 1-to-1. Proof. • In general, 1-to-1 of f and g does not always imply 1-to-1 of f + g. < 白⇒ < Ξ

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

/ 16

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Examples

•
$$f(x) = 3x^3 - 5$$
 is one-to-one, since $f = g \circ u$ where $g(u) = 3u - 5$ and $u(x) = x^3$ are one-to-one.

•
$$f(x) = (3x - 5)^3$$
 is one-to-one, since $f = g \circ u$ where $g(u) = u^3$ and $u(x) = 3x - 5$ are one-to-one.

3

(本語) (本語) (本語)

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$egin{array}{ll} f\circ g(x_1)=f\circ g(x_2)&\Rightarrow&f(g(x_1))=f(g(x_2))&\Rightarrow&g(x_1)=\ g(x_2)&\Rightarrow&x_1=x_2. \end{array}$$

Examples

•
$$f(x) = (3x - 5)^3$$
 is one-to-one, since $f = g \circ u$ where $g(u) = u^3$ and $u(x) = 3x - 5$ are one-to-one.

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$f \circ g(x_1) = f \circ g(x_2) \Rightarrow f(g(x_1)) = f(g(x_2)) \Rightarrow g(x_1) =$$

 $g(x_2) \Rightarrow x_1 = x_2.$

Examples

•
$$f(x) = 3x^3 - 5$$
 is one-to-one, since $f = g \circ u$ where $g(u) = 3u - 5$ and $u(x) = x^3$ are one-to-one.

•
$$f(x) = (3x - 5)^3$$
 is one-to-one, since $f = g \circ u$ where $g(u) = u^3$ and $u(x) = 3x - 5$ are one-to-one.

< 🗇 🕨 <

h

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$f \circ g(x_1) = f \circ g(x_2) \Rightarrow f(g(x_1)) = f(g(x_2)) \Rightarrow g(x_1) =$$

 $g(x_2) \Rightarrow x_1 = x_2.$

Examples

$$g(u) = u^3$$
 and $u(x) = 3x - 5$ are one-to-one.

• $f(x) = \frac{1}{3x^3-5}$ is one-to-one, since $f = g \circ u$ where $g(u) = \frac{1}{u}$

< 67 ▶

坍

Properties

If f and g are one-to-one, then $f \circ g$ is one-to-one.

Proof.

$$f \circ g(x_1) = f \circ g(x_2) \Rightarrow f(g(x_1)) = f(g(x_2)) \Rightarrow g(x_1) =$$

 $g(x_2) \Rightarrow x_1 = x_2.$

Examples

Jiwen He, University of Houston

January 15, 2008

5 / 16

H

For $x_1 \neq x_2$, either $x_1 < x_2$ or $x_1 > x_2$ and so, by monotonicity either $f(x_1) < f(x_2)$ or $f(x_1) > f(x_2)$, thus $f(x_1) \neq f(x_2)$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

January 15, 2008

イロト 不得下 イヨト イヨト 二日

6/16

Increasing/Decreasing Functions and One-To-Oneness

Definition

• A function f is (strictly) increasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \quad \text{implies} \quad f(x_1) < f(x_2).$

• A function *f* is (strictly) decreasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \text{ implies } f(x_1) > f(x_2).$

Theorem

Functions that are increasing or decreasing are one-to-one.

Proof.

For $x_1 \neq x_2$, either $x_1 < x_2$ or $x_1 > x_2$ and so, by monotonicity, either $f(x_1) < f(x_2)$ or $f(x_1) > f(x_2)$, thus $f(x_1) \neq f(x_2)$.

3

イロト 不得 トイヨト イヨト

Increasing/Decreasing Functions and One-To-Oneness

Definition

• A function f is (strictly) increasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \quad \text{implies} \quad f(x_1) < f(x_2).$

• A function f is (strictly) decreasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \text{ implies } f(x_1) > f(x_2).$

Theorem

Functions that are increasing or decreasing are one-to-one.

Proof.

For $x_1 \neq x_2$, either $x_1 < x_2$ or $x_1 > x_2$ and so, by monotonicity, either $f(x_1) < f(x_2)$ or $f(x_1) > f(x_2)$, thus $f(x_1) \neq f(x_2)$.

Increasing/Decreasing Functions and One-To-Oneness

Definition

• A function f is (strictly) increasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \quad \text{implies} \quad f(x_1) < f(x_2).$

• A function *f* is (strictly) decreasing if

 $\forall x_1, \forall x_2, x_1 < x_2 \text{ implies } f(x_1) > f(x_2).$

Theorem

Functions that are increasing or decreasing are one-to-one.

Proof.

For $x_1 \neq x_2$, either $x_1 < x_2$ or $x_1 > x_2$ and so, by monotonicity, either $f(x_1) < f(x_2)$ or $f(x_1) > f(x_2)$, thus $f(x_1) \neq f(x_2)$.

Jiwen He, University of Houston

Theorem

• If f'(x) > 0 for all x, then f is increasing, thus one-to-one.

• If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples

and

Y'(x) = 0 only at $x = \frac{\pi}{2} + 2k\pi$.

3

イロト イヨト イヨト イヨト

Theorem

- If f'(x) > 0 for all x, then f is increasing, thus one-to-one.
- If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples

f'(x) = 0 only at $x = \frac{\pi}{2} + 2k\pi$.

Jiwen He, University of Houston

January 15, 2008

イロト イヨト イヨト イヨト

/ 16

Theorem

- If f'(x) > 0 for all x, then f is increasing, thus one-to-one.
- If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples

•
$$f(x) = x^3 + \frac{1}{2}x$$
 is one-to-one, since
 $f'(x) = 3x^2 + \frac{1}{2} > 0$ for all x.

- $f(x) = -x^5 2x^3 2x$ is one-to-one, since $f'(x) = -5x^4 - 6x^2 - 2 < 0$ for all x
- $f(x) = x \pi + \cos x$ is one-to-one, since $f'(x) = 1 - \sin x \ge 0$

and

$$f'(x) = 0$$
 only at $x = \frac{\pi}{2} + 2k\pi$.

Jiwen He, University of Houston

Theorem

- If f'(x) > 0 for all x, then f is increasing, thus one-to-one.
- If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples

•
$$f(x) = x^3 + \frac{1}{2}x$$
 is one-to-one, since
 $f'(x) = 3x^2 + \frac{1}{2} > 0$ for all x .

• $f(x) = -x^5 - 2x^3 - 2x$ is one-to-one, since $f'(x) = -5x^4 - 6x^2 - 2 < 0$ for all x.

• $f(x) = x - \pi + \cos x$ is one-to-one, since $f'(x) = 1 - \sin x \ge 0$

and

$$f'(x) = 0$$
 only at $x = \frac{\pi}{2} + 2k\pi$.

3

イロト イポト イヨト イヨト

Theorem

- If f'(x) > 0 for all x, then f is increasing, thus one-to-one.
- If f'(x) < 0 for all x, then f is decreasing, thus one-to-one.

Examples

•
$$f(x) = x^3 + \frac{1}{2}x$$
 is one-to-one, since
 $f'(x) = 3x^2 + \frac{1}{2} > 0$ for all x .

- $f(x) = -x^5 2x^3 2x$ is one-to-one, since $f'(x) = -5x^4 - 6x^2 - 2 < 0$ for all x
- $f(x) = x \pi + \cos x$ is one-to-one, since $f'(x) = 1 - \sin x \ge 0$

and

$$f'(x) = 0$$
 only at $x = \frac{\pi}{2} + 2k\pi$.

3

イロト イポト イヨト イヨト

What are Inverse Functions?

Definition

Let f be a one-to-one function. The inverse of f, denoted by f^{-1} , is the unique function with domain equal to the range of f that satisfies

$$f(f^{-1}(x)) = x$$
 for all x in the range of f.

Warning

DON'T Confuse f^{-1} with the reciprocal of f, that is, with 1/f. The "-1" in the notation for the inverse of f is not an exponent; $f^{-1}(x)$ does not mean 1/f(x).

What are Inverse Functions?

Definition

Let f be a one-to-one function. The inverse of f, denoted by f^{-1} , is the unique function with domain equal to the range of f that satisfies

$$f(f^{-1}(x)) = x$$
 for all x in the range of f.

Warning

DON'T Confuse f^{-1} with the reciprocal of f, that is, with 1/f. The "-1" in the notation for the inverse of f is not an exponent; $f^{-1}(x)$ does not mean 1/f(x).

24

f⁻¹

Example

•
$$f(x) = x^3 \Rightarrow f^{-1}(x) = x^{1/3}$$

Proof.

• By definition, f^{-1} satisfies the equation

$$f(f^{-1}(x)) = x$$
 for all x .

• Set
$$y = f^{-1}(x)$$
 and solve $f(y) = x$ for y:

$$f(y) = x \quad \Rightarrow \quad y^3 = x \quad \Rightarrow \quad y = x^{1/3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = x^{1/3}$$

< 🗇 🕨

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture I

January 15, 2008

24

f⁻¹

Example

•
$$f(x) = x^3 \Rightarrow f^{-1}(x) = x^{1/3}$$
.

Proof.

• By definition, f^{-1} satisfies the equation

$$f(f^{-1}(x)) = x$$
 for all x .

Set
$$y = f^{-1}(x)$$
 and solve $f(y) = x$ for y:

$$f(y) = x \quad \Rightarrow \quad y^3 = x \quad \Rightarrow \quad y = x^{1/3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = x^{1/3}$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture I

January 15, 2008

nac

24

f⁻¹

Example

•
$$f(x) = x^3 \Rightarrow f^{-1}(x) = x^{1/3}$$

Proof.

• By definition, f^{-1} satisfies the equation

$$f(f^{-1}(x)) = x$$
 for all x .

• Set
$$y = f^{-1}(x)$$
 and solve $f(y) = x$ for y:

$$f(y) = x \quad \Rightarrow \quad y^3 = x \quad \Rightarrow \quad y = x^{1/3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = x^{1/3}$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture I

January 15, 2008 9

24

f⁻¹

Example

•
$$f(x) = x^3 \Rightarrow f^{-1}(x) = x^{1/3}$$
.

Proof.

• By definition, f^{-1} satisfies the equation

$$f(f^{-1}(x)) = x$$
 for all x .

• Set
$$y = f^{-1}(x)$$
 and solve $f(y) = x$ for y:

$$f(y) = x \quad \Rightarrow \quad y^3 = x \quad \Rightarrow \quad y = x^{1/3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = x^{1/3}$$

Math 1432 – Section 26626, Lecture

Example

•
$$f(x) = x^3 \Rightarrow f^{-1}(x) = x^{1/3}$$
.

In general,

$$f(x) = x^n$$
, *n* odd, $\Rightarrow f^{-1}(x) = x^{1/n}$

A B > 4
 B > 4
 B

Jiwen He, University of Houston

∃ ► < ∃ ►</p>

4

Example

•
$$f(x) = 3x - 5 \Rightarrow f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$$

Proof.

By definition, f⁻¹ satisfies f(f⁻¹(x)) = x, ∀x.
Set y = f⁻¹(x) and solve f(y) = x for y:

$$f(y) = x \Rightarrow 3y - 5 = x \Rightarrow y = \frac{1}{3}x + \frac{5}{3}$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}.$$

January 15, 2008

A (10) F (10)

10 / 16

Example

•
$$f(x) = 3x - 5 \Rightarrow f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$$

Proof.

- By definition, f^{-1} satisfies $f(f^{-1}(x)) = x$, $\forall x$.
 - Set $y = f^{-1}(x)$ and solve f(y) = x for y

$$f(y) = x \Rightarrow 3y - 5 = x \Rightarrow y = \frac{1}{3}x + \frac{5}{3}$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

January 15, 2008

A (10) F (10)

LO / 16

Example

•
$$f(x) = 3x - 5 \Rightarrow f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$$

Proof.

- By definition, f^{-1} satisfies $f(f^{-1}(x)) = x$, $\forall x$.
- Set $y = f^{-1}(x)$ and solve f(y) = x for y:

$$f(y) = x \quad \Rightarrow \quad 3y-5 = x \quad \Rightarrow \quad y = \frac{1}{3}x + \frac{5}{3}.$$

Substitute f⁻¹(x) back in for y,

$$x^{-1}(x) = \frac{1}{3}x + \frac{5}{3}x$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

January 15, 2008

< 🗇 🕨 < 🖃 🕨

10 / 16

Example

•
$$f(x) = 3x - 5 \Rightarrow f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}$$

Proof.

- By definition, f^{-1} satisfies $f(f^{-1}(x)) = x$, $\forall x$.
- Set $y = f^{-1}(x)$ and solve f(y) = x for y:

$$f(y) = x \quad \Rightarrow \quad 3y-5 = x \quad \Rightarrow \quad y = \frac{1}{3}x + \frac{5}{3}.$$

• Substitute $f^{-1}(x)$ back in for y,

$$f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}.$$

< 47 ▶ <

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

Example

•
$$f(x) = 3x - 5 \Rightarrow f^{-1}(x) = \frac{1}{3}x + \frac{5}{3}.$$

In general,

$$f(x) = ax + b, \ a \neq 0, \quad \Rightarrow \quad f^{-1}(x) = \frac{1}{a}x - \frac{b}{a}.$$

3

Jiwen He, University of Houston

▶ < ∃ >

-

• • • • •

Theorem

Proof.

$$f \circ f^{-1} = \mathsf{Id}_{\mathcal{R}(f)}$$
 By definition, f^{-1} satisfies

$$\mathcal{D}(f^{-1}) = \mathcal{R}(f)$$

$$x = f(f^{-1}(\eta))$$

$$f^{-1}$$

$$f^{-1}$$

$$f^{-1}(\eta)$$

 $f(f^{-1}(x)) = x$ for all x in the range of f.

lt is also true that

 $f^{-1}(f(x)) = x$ for all x in the domain of f.

 $f^{-1} \circ f = \operatorname{Id}_{\mathcal{D}(f)}$ $\mathcal{R}(f^{-1}) = \mathcal{D}(f)$

 $f(f^{-1}(y)) = y \qquad \Rightarrow \qquad f(f^{-1}(f(y))) = f(y)$

• f being one-to-one implies $f^{-1}(f(x))) = x$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 1

January 15, 2008

▲ @ ▶ < ∃ ▶</p>

Theorem

$$f \circ f^{-1} = \mathsf{Id}_{\mathcal{R}(f)}$$
 By definition, f^{-1} satisfies

$$\mathcal{D}(f^{-1}) = \mathcal{R}(f)$$

f

 $x = f(f^{-1}(x))$

$$f(f^{-1}(x)) = x$$
 for all x in the range of f

It is also true that

 $f^{-1}(f(x)) = x$ for all x in the domain of f.

 $f^{-1}(x)$

 $f(f^{-1}(y)) = y \quad \Rightarrow \quad f(f^{-1}(f(x))) = f(x)$

f being one-to-one implies
$$f^{-1}(f(x))) = x$$
.

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 1

January 15, 200

< 177 ▶

Theorem

$$f \circ f^{-1} = \mathsf{Id}_{\mathcal{R}(f)}$$
 By definition, f^{-1} satisfies

$$\mathcal{D}(f^{-1}) = \mathcal{R}(f)$$

 $x = f(f^{-1}(x))$

$$f(f^{-1}(x)) = x$$
 for all x in the range of f

It is also true that

 $f^{-1}(f(x)) = x$ for all x in the domain of f.

 $f^{-1}(x)$

$$f^{(x)}$$

$$f^{-1}$$

$$f^{-1}$$

$$f^{-1}$$

$$f^{-1}$$

$$f^{-1}(f(x)) = x$$

 $f^{-1} \circ f = \mathsf{Id}_{\mathcal{D}(f)}$ Proof. $\mathcal{R}(f^{-1}) = \mathcal{D}(f)$ $\forall x \in \mathcal{D}(f), \text{ set } y = f(x).$ Since $y \in \mathcal{R}(f),$

$$f(f^{-1}(y)) = y \quad \Rightarrow \quad f(f^{-1}(f(x))) = f(x).$$

f being one-to-one implies
$$f^{-1}(f(x))) = x$$
.

Jiwen He, University of Houston

Theorem

$$f \circ f^{-1} = \mathsf{Id}_{\mathcal{R}(f)}$$
 By definition, f^{-1} satisfies

$$\mathcal{D}(f^{-1}) = \mathcal{R}(f)$$

 $x = f(f^{-1}(x))$

$$f(f^{-1}(x)) = x$$
 for all x in the range of f

It is also true that

 $f^{-1}(f(x)) = x$ for all x in the domain of f.

 $f^{-1} \circ f = \mathsf{Id}_{\mathcal{D}(f)}$ $\mathcal{R}(f^{-1}) = \mathcal{D}(f)$

 $f^{-1}(x)$

Proof. • $\forall x \in \mathcal{D}(f)$, set y = f(x). Since $y \in \mathcal{R}(f)$, $f(f^{-1}(y)) = y \implies f(f^{-1}(f(x))) = f(x)$.

• f being one-to-one implies
$$f^{-1}(f(x))) = x$$
.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

< 行い

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line y = x.

Example

Given the graph of f, sketch the graph of f^{-1} .

Solution

First draw the line y = x. Then reflect the graph of f in that line.

Corollary

f is continuous \Rightarrow so is f $^{-1}$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 1

January 15 2008

< □ > < 同 > < 三 > < 三

12 / 16

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line y = x.

Example

Given the graph of f, sketch the graph of f^{-1} .

Solution

First draw the line y = x. Then reflect the graph of f in that line.

Corollary

f is continuous $\ \Rightarrow$ so is f $^-$

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line y = x.

Example

Given the graph of f, sketch the graph of f^{-1} .

Solution

First draw the line y = x. Then reflect the graph of f in that line.

Corollary

f is continuous $\ \Rightarrow$ so is

Graphs of f and f^{-1}

The graph of f^{-1} is the graph of f reflected in the line y = x.

Example

Given the graph of f, sketch the graph of f^{-1} .

Solution

First draw the line y = x. Then reflect the graph of f in that line.

Corollary

f is continuous \Rightarrow

 \Rightarrow so is f^{-1} .

গ ব ব

Differentiability of Inverses

Theorem

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x).$$

Proof.

• $\forall y \in \mathcal{D}(f^{-1}) = \mathcal{R}(f), \exists x \in \mathcal{D}(f) \text{ s.t. } y = f(x).$ By definition,

$$f^{-1}(f(x)) = x \quad \Rightarrow \quad \frac{d}{dx}f^{-1}(f(x)) = (f^{-1})'(f(x))f'(x) = 1.$$

• If $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \Rightarrow \quad (f^{-1})'(y) = \frac{1}{f'(x)}$$

Differentiability of Inverses

Theorem

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x).$$

Proof.

• $\forall y \in \mathcal{D}(f^{-1}) = \mathcal{R}(f), \exists x \in \mathcal{D}(f) \text{ s.t. } y = f(x).$ By definition,

$$f^{-1}(f(x)) = x \quad \Rightarrow \quad \frac{d}{dx}f^{-1}(f(x)) = (f^{-1})'(f(x))f'(x) = 1.$$

• If $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \Rightarrow \quad (f^{-1})'(y) = \frac{1}{f'(x)}$$

Differentiability of Inverses

Theorem

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x).$$

Proof.

• $\forall y \in \mathcal{D}(f^{-1}) = \mathcal{R}(f), \exists x \in \mathcal{D}(f) \text{ s.t. } y = f(x).$ By definition,

$$f^{-1}(f(x)) = x \quad \Rightarrow \quad \frac{d}{dx}f^{-1}(f(x)) = (f^{-1})'(f(x))f'(x) = 1.$$

• If $f'(x) \neq 0$, then

$$(f^{-1})'(f(x)) = \frac{1}{f'(x)} \quad \Rightarrow \quad (f^{-1})'(y) = \frac{1}{f'(x)}$$

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Solution

- Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.
- Note that $(f^{-1})'(y) = \frac{1}{f'(x)}, y = f(x).$
- To calculate (f⁻¹)'(y) at y = 9, find a number x s.t.
 f(x) = 9:

$$f(x) = 9 \quad \Rightarrow \quad x^3 + \frac{1}{2}x = 9 \quad \Rightarrow \quad x = 2.$$

• Since $f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$, then $(f^{-1})'(9) = \frac{1}{f'(2)}$

- 1回 ト - 1 日 ト - 4 日

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Solution

- Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.
- Note that $(f^{-1})'(y) = \frac{1}{f'(x)}, y = f(x).$
- To calculate (f⁻¹)'(y) at y = 9, find a number x s.t.
 f(x) = 9:

$$f(x) = 9 \quad \Rightarrow \quad x^3 + \frac{1}{2}x = 9 \quad \Rightarrow \quad x = 2.$$

• Since $f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$, then $(f^{-1})'(9) = \frac{1}{f'(2)} = 1$

A (10) A (10) A (10)

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Solution

- Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.
- Note that $(f^{-1})'(y) = \frac{1}{f'(x)}$, y = f(x).
- To calculate (f⁻¹)'(y) at y = 9, find a number x s.t.
 f(x) = 9:

$$f(x) = 9 \quad \Rightarrow \quad x^3 + \frac{1}{2}x = 9 \quad \Rightarrow \quad x = 2.$$

• Since $f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$, then $(f^{-1})'(9) = \frac{1}{f'(2)} = \frac{1}{2}$

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Solution

• Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.

• Note that
$$(f^{-1})'(y) = \frac{1}{f'(x)}, y = f(x).$$

• To calculate $(f^{-1})'(y)$ at y = 9, find a number x s.t. f(x) = 9:

$$f(x) = 9 \quad \Rightarrow \quad x^3 + \frac{1}{2}x = 9 \quad \Rightarrow \quad x = 2.$$

• Since $f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$, then $(f^{-1})'(9) = \frac{1}{f'(2)} = \frac{2}{25}$.

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Solution

• Note that $f'(x) = 3x^2 + \frac{1}{2} > 0$, thus f is one-to-one.

• Note that
$$(f^{-1})'(y) = \frac{1}{f'(x)}, y = f(x).$$

• To calculate $(f^{-1})'(y)$ at y = 9, find a number x s.t. f(x) = 9:

$$f(x) = 9 \quad \Rightarrow \quad x^3 + \frac{1}{2}x = 9 \quad \Rightarrow \quad x = 2.$$

• Since
$$f'(2) = 3(2)^2 + \frac{1}{2} = \frac{25}{2}$$
, then $(f^{-1})'(9) = \frac{1}{f'(2)} = \frac{2}{25}$.

Example

Let
$$f(x) = x^3 + \frac{1}{2}x$$
. Calculate $(f^{-1})'(9)$.

Note that to calculate $(f^{-1})'(y)$ at a specific y using

$$(f^{-1})'(y) = \frac{1}{f'(x)}, \quad f'(x) \neq 0, \ y = f(x),$$

we only need the value of x s.t. f(x) = y, not the inverse function f^{-1} , which may not be known explicitly.

< 回 ト < 三 ト < 三 ト

Daily Grades

Daily Grades

1.
$$f(x) = x$$
, $f^{-1}(x) = ?$: (a) not exist, (b) x, (c) $\frac{1}{x}$.

2.
$$f(x) = x^3$$
, $f^{-1}(x) = ?$: (a) not exist, (b) $x^{\frac{1}{3}}$, (c) $\frac{1}{x^3}$

3.
$$f(x) = x^2$$
, $f^{-1}(x) = ?$: (a) not exist, (b) $x^{\frac{1}{2}}$, (c) $\frac{1}{x^2}$.

4.
$$f(x) = 3x - 3$$
, $(f^{-1})'(1) = ?$: (a) not exist, (b) 3, (c) $\frac{1}{3}$

Jiwen He, University of Houston

-1

2

Outline

- One-To-One Functions
 - Definition of the One-To-One Functions
 - Properties of One-To-One Functions
 - Increasing/Decreasing Functions and One-To-Oneness

Inverse Functions

- Definition of Inverse Functions
- Properties of Inverse Functions
- Differentiability of Inverses

