Lecture 2

Section 7.2 The Logarithm Function, Part I

Jiwen He

Department of Mathematics, University of Houston

Jiwen He, University of Houston

Definition and Properties Range and Limits Number e Definition Examples

What We Do/Don't Know About $\overline{f(x)} = x^r$?

We know that:

- For r = n positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^n$.

$$\begin{aligned} x^{r+s} &= x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s, \\ \frac{d}{dx} x^r &= r x^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1} x^{r+1} + C, \quad r \neq -1. \end{aligned}$$

< 回 > < 三 > < 三 >

Definition and Properties Range and Limits Number e Definition Exam

efinition Examples Properties

n times

What We Do/Don't Know About $f(x) = x^r$?

We know that:

- For r = n positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^n$.
- For r = 0, $f(x) = x^0 = 1$.
- For r = -n, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. \Rightarrow $x^{-1} = \frac{1}{x}$.
- For $r = \frac{p}{a}$ rational, f(x) = y, x > 0, where $y^q = x^p$.
- Properties (r and s rational)

$$\begin{aligned} x^{r+s} &= x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s, \\ \frac{d}{dx} x^r &= r x^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1} x^{r+1} + C, \quad r \neq -1. \end{aligned}$$

We DO NOT know yet that:

- 4 目 ト - 4 日 ト - 4 日 ト

Definition and Properties Range and Limits Number e Definition Exam

Definition Examples Properties

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$.
To calculate 2⁶, we do in our head or on a paper

 $2 \times 2 \times 2 \times 2 \times 2 \times 2$,

but what does the computer actually do when we type

2^6

• For
$$r = 0$$
, $f(x) = x^0 = 1$.
• For $r = -n$, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. $\Rightarrow x^{-1} = \frac{1}{x}$.
• For $r = \frac{p}{q}$ rational, $f(x) = y$, $x > 0$, where $y^q = x^p$.
• Properties (r and s rational)
 $x^{r+s} = x^r \cdot x^s$, $x^{r\cdot s} = (x^r)^s$,
 $\frac{d}{dx}x^r = rx^{r-1}$, $\int x^r dx = \frac{1}{r+1}x^{r+1} + C$, $r \neq -1$.

efinition Examples Properties

n timos

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ transform}}$.

• For
$$r = 0$$
, $f(x) = x^0 = 1$.

• For
$$r = -n$$
, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. $\Rightarrow \quad x^{-1} = \frac{1}{x}$.

• For $r = \frac{p}{q}$ rational, f(x) = y, x > 0, where $y^q = x^p$.

Properties (r and s rational)

$$\begin{aligned} x^{r+s} &= x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s, \\ \frac{d}{dx} x^r &= r x^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1} x^{r+1} + C, \quad r \neq -1. \end{aligned}$$

We DO NOT know yet that:

(4 個) トイヨト イヨト

n timos

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$.

• For
$$r = 0$$
, $f(x) = x^0 = 1$.

• For
$$r = -n$$
, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. $\Rightarrow \quad x^{-1} = \frac{1}{x}$.

• For $r = \frac{p}{q}$ rational, f(x) = y, x > 0, where $y^q = x^p$.

$$x^{r+s} = x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s,$$

 $\frac{d}{dx}x^r = rx^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1}x^{r+1} + C, \quad r \neq -1.$

Jiwen He, University of Houston

・ 同 ト ・ 三 ト ・ 三

efinition Examples Properties

n timos

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$.

• For
$$r = 0$$
, $f(x) = x^0 = 1$.

• For
$$r = -n$$
, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. \Rightarrow $x^{-1} = \frac{1}{x}$.

• For $r = \frac{p}{q}$ rational, f(x) = y, x > 0, where $y^q = x^p$.

Properties (r and s rational)

$$x^{r+s} = x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s,$$

 $\frac{d}{dx}x^r = rx^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1}x^{r+1} + C, \quad r \neq -1.$

We DO NOT know yet that:

$$\int x^{-1} dx = \int \frac{1}{x} dx =? \quad \text{and} \quad x^r =? \text{ for } r \text{ real.}$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lectur

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$
• For $r = 0$, $f(x) = x^0 = 1$.
• For $r = -n$, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. $\Rightarrow x^{-1} = \frac{1}{x}$.
• For $r = \frac{p}{q}$ rational, $f(x) = y$, $x > 0$, where $y^q = x^p$.
 $f(x) = x^{\frac{1}{n}}$ is the inverse function of $g(x) = x^n$ for $x > 0$.
 $\Rightarrow g \circ f(x) = \left(x^{\frac{1}{n}}\right)^n = x$.
• Properties (r and s rational)

$$x^{r+s} = x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s,$$

 $\frac{d}{dx}x^r = rx^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1}x^{r+1} + C, \quad r \neq -1.$

We DO NOT know yet that:

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

x' =? for r real.

. .:....

What We Do/Don't Know About $f(x) = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$.

• For
$$r = 0$$
, $f(x) = x^0 = 1$.
• For $r = -n$, $f(x) = (\frac{1}{x})^n$, $x \neq 0$. \Rightarrow $x^{-1} = \frac{1}{x}$.

• For
$$r = \frac{p}{q}$$
 rational, $f(x) = y$, $x \neq 0$. (A) $r = \frac{p}{q}$ rational, $r = \frac{p}{q}$.

Properties (r and s rational)

$$x^{r+s} = x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s,$$

 $\frac{d}{dx}x^r = rx^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1}x^{r+1} + C, \quad r \neq -1.$

$$\int x^{-1} dx = \int \frac{1}{x} dx = ? \quad \text{and} \quad x^r = ? \text{ for } r \text{ real.}$$

Jiwen He, University of Houston

n timor

What We Do/Don't Know About $\overline{f(x)} = x^r$?

We know that:

• For
$$r = n$$
 positive integer, $f(x) = x^n = \overbrace{x \cdot x \cdots x}^{n \text{ times}}$.

• For
$$r = 0$$
, $f(x) = x^0 = 1$.
• For $r = -n$, $f(x) = (\frac{1}{2})^n$, $x \neq 0$, $x^{-1} = \frac{1}{2}$

• For
$$r = -n$$
, $f(x) = \left(\frac{1}{x}\right)^n$, $x \neq 0$. $\Rightarrow x^{-1} = \frac{1}{x}$.

• For
$$r = \frac{p}{q}$$
 rational, $f(x) = y$, $x > 0$, where $y^q = x^p$.

Properties (r and s rational)

$$x^{r+s} = x^r \cdot x^s, \quad x^{r\cdot s} = (x^r)^s,$$

 $\frac{d}{dx}x^r = rx^{r-1}, \quad \int x^r \, dx = \frac{1}{r+1}x^{r+1} + C, \quad r \neq -1.$

We DO NOT know yet that:

$$\int x^{-1} dx = \int \frac{1}{x} dx = ? \quad \text{and} \quad x^r = ? \text{ for } r \text{ real.}$$

efinition Examples Properties

What is the Natural Log Function?

Definition

The function

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0,$$

is called the natural logarithm function.

• $\ln 1 = 0.$

• $\ln x < 0$ for 0 < x < 1, $\ln x > 0$ for x > 1.

- $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0 \qquad \Rightarrow \quad \ln x \text{ is increasing}$
- $\frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} < 0 \implies \ln x$ is concave down

efinition Examples Properties

What is the Natural Log Function?

Definition

The function

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0,$$

is called the natural logarithm function.

● In 1 = 0.

• $\ln x < 0$ for 0 < x < 1, $\ln x > 0$ for x > 1.

• $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0$

 \Rightarrow ln x is increasing.

 $\frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} < 0 \implies \ln x$ is concave down

What is the Natural Log Function?

Definition

The function

$$\ln x = \int_1^x \frac{1}{t} dt, \quad x > 0,$$

is called the natural logarithm function.

• $\ln 1 = 0$.

- $\ln x < 0$ for 0 < x < 1. $\ln x > 0$ for x > 1.
- $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0 \qquad \Rightarrow \quad \ln x \text{ is increasing.}$

efinition Examples Properties

What is the Natural Log Function?

- In 1 = 0.
- $\ln x < 0$ for 0 < x < 1, $\ln x > 0$ for x > 1.
- $\frac{d}{dx}(\ln x) = \frac{1}{x} > 0$
- \Rightarrow ln x is increasing.
- $\frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} < 0 \implies \ln x$ is concave down.

What is the Natural Log Function?

- $\ln 1 = 0$.
- $\ln x < 0$ for 0 < x < 1, $\ln x > 0$ for x > 1.

•
$$\frac{d}{dx}(\ln x) = \frac{1}{x} > 0$$

$$\Rightarrow$$
 ln x is increasing.

- $\frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} < 0 \implies \ln x$ is concave down.

finition Examples Properties

Example 1: $\ln x = 0$ and $(\ln x)' = 1$ at x = 1

Proof.

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\ln x - \ln 1}{x - 1} = \left. \frac{d}{dx} (\ln x) \right|_{x = 1} = \left. \frac{1}{x} \right|_{x = 1} = 1.$$

The limit has the indeterminate form $\begin{pmatrix} 0\\ \overline{0} \end{pmatrix}$ and is interpreted here in terms of the derivative of $\ln x$.

finition Examples Properties

Example 1: $\ln x = 0$ and $(\ln x)' = 1$ at x = 1

Proof.

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\ln x - \ln 1}{x - 1} = \frac{d}{dx} (\ln x) \Big|_{x = 1} = \frac{1}{x} \Big|_{x = 1} = 1.$$

The limit has the indeterminate form $\begin{pmatrix} 0\\ \overline{0} \end{pmatrix}$ and is interpreted here in terms of the derivative of $\ln x$.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

January 17, 2008

1/20

finition Examples Properties

Example 1: $\ln x = 0$ and $(\ln x)' = 1$ at x = 1

Proof.

$$\lim_{x \to 1} \frac{\ln x}{x - 1} = \lim_{x \to 1} \frac{\ln x - \ln 1}{x - 1} = \frac{d}{dx} (\ln x) \Big|_{x = 1} = \frac{1}{x} \Big|_{x = 1} = 1.$$

The limit has the indeterminate form $\begin{pmatrix} 0\\0 \end{pmatrix}$ and is interpreted here in terms of the derivative of ln x.

Jiwen He, University of Houston

Definition Examples Properties

Example 2: $\ln x$ and x - 1

Exercise 7.2.24(a)

Show that

$$\frac{x-1}{x} \le \ln x \le x-1, \quad \forall x > 0.$$
 (1)

Proof.

• By the mean-value theorem, $\exists c$ between 1 and x s.t

$$\ln x = \int_{1}^{x} \frac{1}{t} dt = \frac{1}{c}(x-1).$$

• If x > 1, then $\frac{1}{x} < \frac{1}{c} < 1$ and x - 1 > 0 so (1) holds. • If 0 < x < 1, then $1 < \frac{1}{c} < \frac{1}{x}$ and x - 1 < 0 so (1) hold

Jiwen He, University of Houston

(a)

efinition Examples Properties

Example 2: $\ln x$ and x - 1

Exercise 7.2.24(a) Show that $\frac{x-1}{x} \le \ln x \le x-1, \quad \forall x > 0.$ (1)

Proof.

• By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$\ln x = \int_{1}^{x} \frac{1}{t} dt = \frac{1}{c}(x-1).$$

• If x > 1, then $\frac{1}{x} < \frac{1}{c} < 1$ and x - 1 > 0 so (1) holds. • If 0 < x < 1, then $1 < \frac{1}{c} < \frac{1}{x}$ and x - 1 < 0 so (1) hold

Jiwen He, University of Houston

(a)

efinition Examples Properties

Example 2: $\ln x$ and x - 1

Exercise 7.2.24(a) Show that $\frac{x-1}{x} \le \ln x \le x-1, \quad \forall x > 0.$ (1)

Proof.

• By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$\ln x = \int_{1}^{x} \frac{1}{t} dt = \frac{1}{c}(x-1).$$

• If
$$x > 1$$
, then $\frac{1}{x} < \frac{1}{c} < 1$ and $x - 1 > 0$ so (1) holds.
• If $0 < x < 1$, then $1 < \frac{1}{c} < \frac{1}{x}$ and $x - 1 < 0$ so (1) holds.

Jiwen He, University of Houston

< (T) > <

efinition Examples Properties

Example 2: $\ln x$ and x - 1

Exercise 7.2.24(a) Show that $\frac{x-1}{x} \le \ln x \le x-1, \quad \forall x > 0.$ (1)

Proof.

• By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$\ln x = \int_{1}^{x} \frac{1}{t} dt = \frac{1}{c}(x-1).$$

• If
$$x > 1$$
, then $\frac{1}{x} < \frac{1}{c} < 1$ and $x - 1 > 0$ so (1) holds.
• If $0 < x < 1$, then $1 < \frac{1}{c} < \frac{1}{x}$ and $x - 1 < 0$ so (1) holds.

Jiwen He, University of Houston

▲ @ ▶ ▲ Э

efinition Examples Properties

Example 3: In *n* and Harmonic Number

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 2

January 17, 2008

b / 20

efinition Examples Properties

Example 3: In *n* and Harmonic Number

Proof.

Let
$$P = \{1, 2, \dots, n\}$$
 be a partition of $[1, n]$. Then
 $L_f(P) = \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \int_1^n \frac{1}{t} dt < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} = U_f(P)$

Jiwen He, University of Houston

/ 20

Example 4: Euler's Constant γ

Show that

$$\frac{1}{2} < \gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \ln n \right) < 1.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture

/ 20

内

Example 4: Euler's Constant γ

Proof.

• The sum of the shaded areas is given by

$$S_n = U_f(P) - \int_1^n \frac{1}{t} dt = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \ln n.$$

Jiwen He, University of Houston

Example 4: Euler's Constant γ

Proof. (cont.)

• The sum of the areas of the triangles formed by connecting the points $(1, 1), \dots, (n, \frac{1}{n})$ is

$$T_n = \frac{1}{2} \cdot 1\left[\left(1 - \frac{1}{2}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)\right] = \frac{1}{2}\left(1 - \frac{1}{n}\right).$$

Jiwen He, University of Houston

Definition and Properties Range and Limits Number *e* Definition Examples Properties

Example 4: Euler's Constant γ

Proof. (cont.)

• The sum of the areas of the indicated rectangles is

$$R_n = 1\left[\left(1-\frac{1}{2}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right] = 1-\frac{1}{n}$$

Jiwen He, University of Houston

nuary 17, 2008 11

Definition and Properties Range and Limits Number e Definition Examples Properties

Example 4: Euler's Constant γ

Jiwen He, University of Houston

inition Examples Properties

Basic Property: $\ln(xy) = \ln x + \ln y$

Lemma

$$\ln(xy) = \ln x + \ln y, \quad x > 0, y > 0.$$

Proof.

• Left side:

$$\frac{d}{dx}\ln(xy) = \frac{1}{xy}y = \frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(\ln x + \ln y) = \frac{1}{x}.$$

• Then

$$\ln(xy) = \ln x + \ln y + C$$

for some constant C. At x = 1, both sides take the same value of ln y, thus C = 0.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

3

<ロ> (日) (日) (日) (日) (日)

inition Examples Properties

Basic Property: $\ln(xy) = \ln x + \ln y$

Lemma

$$\ln(xy) = \ln x + \ln y, \quad x > 0, y > 0.$$

Proof.

• Left side:

$$\frac{d}{dx}\ln(xy) = \frac{1}{xy}y = \frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(\ln x + \ln y) = \frac{1}{x}.$$

• Then

$$\ln(xy) = \ln x + \ln y + C$$

for some constant C. At x = 1, both sides take the same value of ln y, thus C = 0.

Jiwen He, University of Houston

3

イロト イポト イヨト イヨト

inition Examples Properties

Basic Property: $\ln(xy) = \ln x + \ln y$

Lemma

$$\ln(xy) = \ln x + \ln y, \quad x > 0, y > 0.$$

Proof.

• Left side:

$$\frac{d}{dx}\ln(xy) = \frac{1}{xy}y = \frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(\ln x + \ln y) = \frac{1}{x}.$$

Then

$$\ln(xy) = \ln x + \ln y + C$$

for some constant C. At x = 1, both sides take the same value of ln y, thus C = 0.

Jiwen He, University of Houston

イロト イポト イヨト イヨト

inition Examples Properties

Basic Property: $\ln(xy) = \ln x + \ln y$

Lemma

$$\ln(xy) = \ln x + \ln y, \quad x > 0, y > 0.$$

Proof.

• Left side:

$$\frac{d}{dx}\ln(xy) = \frac{1}{xy}y = \frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(\ln x + \ln y) = \frac{1}{x}.$$

Then

$$\ln(xy) = \ln x + \ln y + C$$

for some constant C. At x = 1, both sides take the same value of ln y, thus C = 0.

内

Jiwen He, University of Houston

■ ◆ ■ ◆ ■ ● ■ anuary 17, 2008

Image: A match a ma

finition Examples Properties

Basic Property: $\ln x^r = r \ln x$

Lemma

$$\ln x^r = r \ln x \quad (r \ rational).$$

Proof.

• Left side:

$$\frac{d}{dx}\ln x^{r} = \frac{1}{x^{r}}\frac{d}{dx}x^{r} = \frac{1}{x^{r}}rx^{r-1} = r\frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(r\ln x) = r\frac{1}{x}.$$

• Then

 $\ln x^r = r \ln x + C$

for some constant C. At x = 1, both sides are zero, thus C = 0.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

January 17, 2008

< 🗇 🕨

nition Examples Properties

Basic Property: $\ln x^r = r \ln x$

Lemma

$$\ln x^r = r \ln x \quad (r \ rational).$$

Proof.

• Left side:

$$\frac{d}{dx}\ln x^{r} = \frac{1}{x^{r}}\frac{d}{dx}x^{r} = \frac{1}{x^{r}}rx^{r-1} = r\frac{1}{x}.$$

Right side:

$$\frac{d}{dx}(r\ln x) = r\frac{1}{x}.$$

• Then

$$\ln x^r = r \ln x + C$$

for some constant C. At x = 1, both sides are zero, thus C = 0.

Math 1432 - Section 26626, Lecture 2

< 🗇 🕨

h

nition Examples Properties

Basic Property: $\ln x^r = r \ln x$

Lemma

$$\ln x^r = r \ln x \quad (r \ rational).$$

Proof.

• Left side:

$$\frac{d}{dx}\ln x^{r} = \frac{1}{x^{r}}\frac{d}{dx}x^{r} = \frac{1}{x^{r}}rx^{r-1} = r\frac{1}{x}.$$

• Right side:

$$\frac{d}{dx}(r\ln x) = r\frac{1}{x}.$$

• Then

$$\ln x^r = r \ln x + C$$

for some constant C. At x = 1, both sides are zero, thus C = 0.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

January 17, 2008

< 🗇 🕨

4 / 20

inition Examples Properties

Basic Property: $\ln x^r = r \ln x$

Lemma

$$\ln x^r = r \ln x \quad (r \ rational).$$

Proof.

• Left side:

$$\frac{d}{dx}\ln x^{r} = \frac{1}{x^{r}}\frac{d}{dx}x^{r} = \frac{1}{x^{r}}rx^{r-1} = r\frac{1}{x}.$$

Right side:

$$\frac{d}{dx}(r\ln x) = r\frac{1}{x}.$$

Then

$$\ln x^r = r \ln x + C$$

for some constant C. At x = 1, both sides are zero, thus C = 0.

Math 1432 - Section 26626, Lecture 2

A ►

$$\mathsf{Range} = (-\infty,\infty)$$

Theorem

The log function $\ln x$ has range $(-\infty, \infty)$ and $\lim \ln x = -\infty, \quad \lim \ln x = \infty.$ $x \rightarrow 0^+$ $x \rightarrow \infty$

Proof.

$$n\ln 2 > M, \quad -n\ln 2 < -M.$$

Jiwen He, University of Houston

3

< 🗇 🕨

 $x \rightarrow \infty$

< 🗇 🕨

$$\mathsf{Range} = (-\infty,\infty)$$

Jiwen He, University of Houston

くほ

3

ange Limits

$$\mathsf{Range} = (-\infty,\infty)$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

January 17, 2008

Limit: $\lim_{x\to 0^+} x^r \ln x$

Corollary $\lim_{x \to 0^+} x^r \ln x = 0 \quad \text{for any } r > 0.$

Proof. Let $y = x^{-1}$. Then $\lim_{x \to 0^+} x^r \ln x = \lim_{y \to \infty} y^{-r} \ln y^{-1} = -\lim_{y \to \infty} \frac{\ln y}{y^r} = 0.$

Jiwen He, University of Houston

inuary 17, 2008 17

(日) (同) (三) (三)

Limit: $\lim_{x\to 0^+} x^r \ln x$

Proof.

Let
$$y = x^{-1}$$
. Then

$$\lim_{x \to 0^{+}} x^{r} \ln x = \lim_{y \to \infty} y^{-r} \ln y^{-1} = -\lim_{y \to \infty} \frac{\ln y}{y^{r}} = 0.$$

Jiwen He, University of Houston

nuary 17, 2008 17

Number e

Definition

The number *e* is defined by

$$\ln e = 1$$

i.e., the unique number at which $\ln x = 1$.

Theorem

$$\ln e^r = r$$
 for any rational number r.

Proof.

 $\ln e^r = r \ln e = r$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

э

イロト イポト イヨト イヨト

Number e

Definition

The number *e* is defined by

$$\ln e = 1$$

i.e., the unique number at which $\ln x = 1.$

Theorem

$$\ln e^r = r$$
 for any rational number r.

Jiwen He, University of Houston

< A > < E

3

Number e

Definition

The number *e* is defined by

$$\ln e = 1$$

i.e., the unique number at which $\ln x = 1$.

Theorem

$$\ln e^r = r$$
 for any rational number r.

Proof.

$$\ln e^r = r \ln e = r$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 2

▲ ▲ ▲ ▲
 January 17, 2008

< 17 >

Quiz

1.	$\ln 1 = ?:$	(a) —1,	(b) 0,	(c) 1.
2.	In <i>e</i> =? :	(a) 0,	(b) 1,	(c) <i>e</i> .
3.	$\lim_{x\to 0^+} \ln x = ?:$	(a) $-\infty$,	(b) 0,	(c) ∞ .
4.	$\lim_{x\to\infty}\ln x = ?:$	(a) $-\infty$,	(b) 0,	(c) ∞.

Jiwen He, University of Houston

-2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Outline

- Definition and Properties of the Natural Log Function
 - Definition of the Natural Log Function
 - Examples
 - Algebraic Properties of the Natural Log Function
- Range and Limits of the Natural Log Function
 - Range of the Natural Log Function
 - Limits of the Natural Log Function

Number e

