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Definition and Properties Range and Limits Number e Definition Examples Properties

What We Do/Don’t Know About f (x) = x r?

We know that:

For r = n positive integer, f (x) = xn =

n times︷ ︸︸ ︷
x · x · · · x .

For r = 0, f (x) = x0 = 1.

For r = −n, f (x) =
(

1
x

)n
, x 6= 0. ⇒ x−1 = 1

x .

For r = p
q rational, f (x) = y , x > 0, where yq = xp.

Properties (r and s rational)

x r+s = x r · x s , x r ·s =
(
x r

)s
,

d

dx
x r = rx r−1,

∫
x r dx =

1

r + 1
x r+1 + C , r 6= −1.

We DO NOT know yet that:∫
x−1 dx =

∫
1

x
dx =? and x r =? for r real.
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What is the Natural Log Function?

Definition

The function

ln x =

∫ x

1

1

t
dt, x > 0,

is called the natural logarithm function.

ln 1 = 0.

ln x < 0 for 0 < x < 1, ln x > 0 for x > 1.
d
dx (ln x) = 1

x > 0 ⇒ ln x is increasing.

d2

dx2 (ln x) = − 1
x2 < 0 ⇒ ln x is concave down.
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Definition and Properties Range and Limits Number e Definition Examples Properties

Example 1: ln x = 0 and (ln x)′ = 1 at x = 1

Exercise 7.2.23

Show that

lim
x→1

ln x

x − 1
= 1.

Proof.

lim
x→1

ln x

x − 1
= lim

x→1

ln x − ln 1

x − 1
=

d

dx
(ln x)

∣∣∣∣
x=1

=
1

x

∣∣∣∣
x=1

= 1.

The limit has the indeterminate form
(

0
0

)
and is interpreted here in

terms of the derivative of ln x .
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Example 2: ln x and x − 1

Exercise 7.2.24(a)

Show that

x − 1

x
≤ ln x ≤ x − 1, ∀x > 0. (1)

Proof.

By the mean-value theorem, ∃c between 1 and x s.t.

ln x =

∫ x

1

1

t
dt =

1

c
(x − 1).

If x > 1, then 1
x < 1

c < 1 and x − 1 > 0 so (1) holds.

If 0 < x < 1, then 1 < 1
c < 1

x and x − 1 < 0 so (1) holds.
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Example 3: ln n and Harmonic Number

Exercise 7.2.25(a)

Show that for n ≥ 2

1

2
+

1

3
+ · · ·+ 1

n
< ln n < 1 +

1

2
+

1

3
+ · · ·+ 1

n − 1
.
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Example 3: ln n and Harmonic Number

Proof.

Let P = {1, 2, · · · , n} be a partition of [1, n]. Then

Lf (P) =
1

2
+

1

3
+· · ·+1

n
<

∫ n

1

1

t
dt < 1+

1

2
+

1

3
+· · ·+ 1

n − 1
= Uf (P).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 2 January 17, 2008 7 / 20



Definition and Properties Range and Limits Number e Definition Examples Properties

Example 4: Euler’s Constant γ

Exercise 7.2.25(c)

Show that

1

2
< γ = lim

n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n − 1
− ln n

)
< 1.
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Example 4: Euler’s Constant γ

Proof.

The sum of the shaded areas is given by

Sn = Uf (P)−
∫ n

1

1

t
dt = 1 +

1

2
+

1

3
+ · · ·+ 1

n − 1
− ln n.
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Example 4: Euler’s Constant γ

Proof. (cont.)

The sum of the areas of the triangles formed by connecting
the points (1, 1), · · · , (n, 1

n ) is

Tn =
1

2
· 1

[(
1− 1

2

)
+ · · ·+

(
1

n − 1
− 1

n

)]
=

1

2

(
1− 1

n

)
.
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Example 4: Euler’s Constant γ

Proof. (cont.)

The sum of the areas of the indicated rectangles is

Rn = 1

[(
1− 1

2

)
+ · · ·+

(
1

n − 1
− 1

n

)]
= 1− 1

n
.
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Example 4: Euler’s Constant γ

Proof. (cont.)

Since Tn < Sn < Rn,

1

2

(
1− 1

n

)
< 1 +

1

2
+

1

3
+ · · ·+ 1

n − 1
− ln n < 1− 1

n
.

Letting n →∞ we have 1
2 < γ < 1.
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Basic Property: ln(xy) = ln x + ln y

Lemma

ln(xy) = ln x + ln y , x > 0, y > 0.

Proof.

Left side:
d

dx
ln(xy) =

1

xy
y =

1

x
.

Right side:
d

dx

(
ln x + ln y

)
=

1

x
.

Then
ln(xy) = ln x + ln y + C

for some constant C . At x = 1, both sides take the same
value of ln y , thus C = 0.
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Basic Property: ln x r = r ln x

Lemma

ln x r = r ln x (r rational).

Proof.

Left side:

d

dx
ln x r =

1

x r

d

dx
x r =

1

x r
r x r−1 = r

1

x
.

Right side:
d

dx

(
r ln x) = r

1

x
.

Then
ln x r = r ln x + C

for some constant C . At x = 1, both sides are zero, thus
C = 0.
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Range = (−∞,∞)

Theorem

The log function ln x has range (−∞,∞) and

lim
x→0+

ln x = −∞, lim
x→∞

ln x = ∞.

Proof.

Let M > 0 arbitrary in R. Since ln 2 > 0, ∃n ∈ N s.t.

n ln 2 > M, −n ln 2 < −M.

Since n ln 2 = ln(2n) and −n ln 2 = ln(2−n),

ln(2n) > M, ln(2−n) < −M.
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Definition and Properties Range and Limits Number e Range Limits

Limit: limx→∞
ln x
x r

Theorem

lim
x→∞

ln x

x r
= 0 for any r > 0.

ln x grows slower than any positive power as x →∞.

Proof.

Choose a rational number p s.t. 1− r < p < 1. For x > 1,

ln x =

∫ x

1

1

t
dt <

∫ x

1

1

tp
dt =

1

1− p
t1−p

∣∣∣∣x
1

=
1

1− p

(
x1−p−1

)
.

Then

0 <
ln x

x r
<

1

1− p

x1−p − 1

x r
=

1

1− p

(
x1−p−r − x−r

)
Use the pinching theorem to take the limit as x →∞.
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Definition and Properties Range and Limits Number e Range Limits

Limit: limx→0+ x r ln x

Corollary

lim
x→0+

x r ln x = 0 for any r > 0.

Proof.

Let y = x−1. Then

lim
x→0+

x r ln x = lim
y→∞

y−r ln y−1 = − lim
y→∞

ln y

y r
= 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 2 January 17, 2008 17 / 20



Definition and Properties Range and Limits Number e Range Limits

Limit: limx→0+ x r ln x

Corollary

lim
x→0+

x r ln x = 0 for any r > 0.

Proof.

Let y = x−1. Then

lim
x→0+

x r ln x = lim
y→∞

y−r ln y−1 = − lim
y→∞

ln y

y r
= 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 2 January 17, 2008 17 / 20



Definition and Properties Range and Limits Number e

Number e

Definition

The number e is defined by

ln e = 1

i.e., the unique number at which
ln x = 1.

Theorem

ln er = r for any rational number r .

Proof.

ln er = r ln e = r
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Definition and Properties Range and Limits Number e

Quiz

Quiz

1. ln 1 =? : (a) −1, (b) 0, (c) 1.

2. ln e =? : (a) 0, (b) 1, (c) e.

3. lim
x→0+

ln x =? : (a) −∞, (b) 0, (c) ∞.

4. lim
x→∞

ln x =? : (a) −∞, (b) 0, (c) ∞.
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Outline
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