Lecture 2
 Section 7.2 The Logarithm Function, Part I

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:
n times

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdot \cdots x}^{n \text { times }}$.

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdot \cdots x}^{n \text { times }}$. To calculate 2^{6}, we do in our head or on a paper

$$
2 \times 2 \times 2 \times 2 \times 2 \times 2
$$

but what does the computer actually do when we type 2^6

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:
n times

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}$.
- For $r=0, f(x)=x^{0}=1$.

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}^{n \text { times }}$.
- For $r=0, f(x)=x^{0}=1$.
- For $r=-n, f(x)=\left(\frac{1}{x}\right)^{n}, x \neq 0 . \quad \Rightarrow \quad x^{-1}=\frac{1}{x}$.

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}^{n \text { times }}$.
- For $r=0, f(x)=x^{0}=1$.
- For $r=-n, f(x)=\left(\frac{1}{x}\right)^{n}, x \neq 0 . \quad \Rightarrow \quad x^{-1}=\frac{1}{x}$.
- For $r=\frac{p}{q}$ rational, $f(x)=y, x>0$, where $y^{q}=x^{p}$.

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

- For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}^{n \text { times }}$.
- For $r=0, f(x)=x^{0}=1$.
- For $r=-n, f(x)=\left(\frac{1}{x}\right)^{n}, x \neq 0 . \quad \Rightarrow \quad x^{-1}=\frac{1}{x}$.
- For $r=\frac{p}{q}$ rational, $f(x)=y, x>0$, where $y^{q}=x^{p}$.
$f(x)=x^{\frac{1}{n}}$ is the inverse function of $g(x)=x^{n}$ for $x>0$.
$\Rightarrow \quad g \circ f(x)=\left(x^{\frac{1}{n}}\right)^{n}=x$.

- Properties (r and s rational)

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

> For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}^{n \text { times }}$. For $r=0, f(x)=x^{0}=1$. For $r=-n, f(x)=\left(\frac{1}{x}\right)^{n}, x \neq 0 . \quad \Rightarrow \quad x^{-1}=\frac{1}{x}$.

- For $r=\frac{p}{q}$ rational, $f(x)=y, x>0$, where $y^{q}=x^{p}$.
- Properties (r and s rational)

$$
\begin{aligned}
& x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r \cdot s}=\left(x^{r}\right)^{s} \\
& \frac{d}{d x} x^{r}=r x^{r-1}, \quad \int x^{r} d x=\frac{1}{r+1} x^{r+1}+C, \quad r \neq-1
\end{aligned}
$$

We DO NOT know yet that:

What We Do/Don't Know About $f(x)=x^{r}$?

We know that:

> For $r=n$ positive integer, $f(x)=x^{n}=\overbrace{x \cdot x \cdots x}^{n \text { times }}$. For $r=0, f(x)=x^{0}=1$. For $r=-n, f(x)=\left(\frac{1}{x}\right)^{n}, x \neq 0 . \quad \Rightarrow \quad x^{-1}=\frac{1}{x}$.

- For $r=\frac{p}{q}$ rational, $f(x)=y, x>0$, where $y^{q}=x^{p}$.
- Properties (r and s rational)

$$
\begin{aligned}
& x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r \cdot s}=\left(x^{r}\right)^{s} \\
& \frac{d}{d x} x^{r}=r x^{r-1}, \quad \int x^{r} d x=\frac{1}{r+1} x^{r+1}+C, \quad r \neq-1
\end{aligned}
$$

We DO NOT know yet that:

$$
\int x^{-1} d x=\int \frac{1}{x} d x=? \quad \text { and } \quad x^{r}=\text { ? for } r \text { real. }
$$

What is the Natural Log Function?

Definition

The function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

is called the natural logarithm function.

What is the Natural Log Function?

Definition

The function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

is called the natural logarithm function.

- $\ln 1=0$.
- $\ln x<0$ for $0<x<1$, $\ln x>0$ for $x>1$ - $\frac{d}{d x}(\ln x)$ $\ln x$ is increasing

What is the Natural Log Function?

Definition

The function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

is called the natural logarithm function.

- $\ln 1=0$.
- $\ln x<0$ for $0<x<1, \quad \ln x>0$ for $x>1$.
- $\frac{d}{d x}(\ln x)=\frac{1}{x}>0$
$\Rightarrow \quad \ln x$ is increasing.

What is the Natural Log Function?

Definition

The function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0
$$

is called the natural logarithm function.

- $\ln 1=0$.
- $\ln x<0$ for $0<x<1, \quad \ln x>0$ for $x>1$.
- $\frac{d}{d x}(\ln x)=\frac{1}{x}>0 \quad \Rightarrow \ln x$ is increasing.
- $\frac{d^{2}}{d x^{2}}(\ln x)=-\frac{1}{x^{2}}<0 \Rightarrow \ln x$ is concave down.

What is the Natural Log Function?

Definition

The function

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t, \quad x>0,
$$

is called the natural logarithm function.

- $\ln 1=0$.
- $\ln x<0$ for $0<x<1, \quad \ln x>0$ for $x>1$.
- $\frac{d}{d x}(\ln x)=\frac{1}{x}>0 \quad \Rightarrow \ln x$ is increasing.
- $\frac{d^{2}}{d x^{2}}(\ln x)=-\frac{1}{x^{2}}<0 \quad \Rightarrow \ln x$ is concave down.

Example 1: $\ln x=0$ and $(\ln x)^{\prime}=1$ at $x=1$

Exercise 7.2.23

Show that

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=1
$$

Proof.

Example 1: $\ln x=0$ and $(\ln x)^{\prime}=1$ at $x=1$

Exercise 7.2.23

Show that

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=1
$$

Proof.

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{\ln x-\ln 1}{x-1}=\left.\frac{d}{d x}(\ln x)\right|_{x=1}=\left.\frac{1}{x}\right|_{x=1}=1
$$

The limit has the indeterminate form $\left(\frac{0}{0}\right)$ and is interpreted here in terms of the derivative of $\ln x$.

Example 1: $\ln x=0$ and $(\ln x)^{\prime}=1$ at $x=1$

Exercise 7.2.23

Show that

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=1
$$

Proof.

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{\ln x-\ln 1}{x-1}=\left.\frac{d}{d x}(\ln x)\right|_{x=1}=\left.\frac{1}{x}\right|_{x=1}=1
$$

The limit has the indeterminate form ($\frac{0}{0}$) and is interpreted here in terms of the derivative of $\ln x$.

Example 2: $\ln x$ and $x-1$

Exercise 7.2.24(a)

Show that

$$
\begin{equation*}
\frac{x-1}{x} \leq \ln x \leq x-1, \quad \forall x>0 \tag{1}
\end{equation*}
$$

Proof.

- By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t=\frac{1}{c}(x-1)
$$

- If $x>1$, then $\frac{1}{x}<\frac{1}{c}<1$ and $x-1>0$ so (1) holds

Example 2: $\ln x$ and $x-1$

Exercise 7.2.24(a)

Show that

$$
\begin{equation*}
\frac{x-1}{x} \leq \ln x \leq x-1, \quad \forall x>0 \tag{1}
\end{equation*}
$$

Proof.

- By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t=\frac{1}{c}(x-1)
$$

- If $x>1$, then $\frac{1}{x}<\frac{1}{c}<1$ and $x-1>0$ so (1) holds.

Example 2: $\ln x$ and $x-1$

Exercise 7.2.24(a)

Show that

$$
\begin{equation*}
\frac{x-1}{x} \leq \ln x \leq x-1, \quad \forall x>0 \tag{1}
\end{equation*}
$$

Proof.

- By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t=\frac{1}{c}(x-1)
$$

- If $x>1$, then $\frac{1}{x}<\frac{1}{c}<1$ and $x-1>0$ so (1) holds.
- If $0<x<1$, then $1<\frac{1}{c}<\frac{1}{x}$ and $x-1<0$ so (1) holds.

Example 2: $\ln x$ and $x-1$

Exercise 7.2.24(a)

Show that

$$
\begin{equation*}
\frac{x-1}{x} \leq \ln x \leq x-1, \quad \forall x>0 \tag{1}
\end{equation*}
$$

Proof.

- By the mean-value theorem, $\exists c$ between 1 and x s.t.

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t=\frac{1}{c}(x-1)
$$

- If $x>1$, then $\frac{1}{x}<\frac{1}{c}<1$ and $x-1>0$ so (1) holds.
- If $0<x<1$, then $1<\frac{1}{c}<\frac{1}{x}$ and $x-1<0$ so (1) holds.

Example 3: In n and Harmonic Number

Exercise 7.2.25(a)

Show that for $n \geq 2$

$$
\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<\ln n<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1} .
$$

Example 3: In n and Harmonic Number

Proof.

Let $P=\{1,2, \cdots, n\}$ be a partition of $[1, n]$. Then
$L_{f}(P)=\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<\int_{1}^{n} \frac{1}{t} d t<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}=U_{f}(P)$.

Example 4: Euler's Constant γ

Exercise 7.2.25(c)

Show that

$$
\frac{1}{2}<\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln n\right)<1
$$

Example 4: Euler's Constant γ

Proof.

- The sum of the shaded areas is given by

$$
S_{n}=U_{f}(P)-\int_{1}^{n} \frac{1}{t} d t=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln n .
$$

Example 4: Euler's Constant γ

Proof. (cont.)

- The sum of the areas of the triangles formed by connecting the points $(1,1), \cdots,\left(n, \frac{1}{n}\right)$ is

$$
T_{n}=\frac{1}{2} \cdot 1\left[\left(1-\frac{1}{2}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right]=\frac{1}{2}\left(1-\frac{1}{n}\right) .
$$

Example 4: Euler's Constant γ

Proof. (cont.)

- The sum of the areas of the indicated rectangles is

$$
R_{n}=1\left[\left(1-\frac{1}{2}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)\right]=1-\frac{1}{n} .
$$

Example 4: Euler's Constant γ

Proof. (cont.)

- Since $T_{n}<S_{n}<R_{n}$,

$$
\frac{1}{2}\left(1-\frac{1}{n}\right)<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln n<1-\frac{1}{n}
$$

Letting $n \rightarrow \infty$ we have $\frac{1}{2}<\gamma<1$.

Basic Property: $\ln (x y)=\ln x+\ln y$

Lemma

$$
\ln (x y)=\ln x+\ln y, \quad x>0, y>0 .
$$

Proof.

- Left side:

- Right side

Basic Property: $\ln (x y)=\ln x+\ln y$

Lemma

$$
\ln (x y)=\ln x+\ln y, \quad x>0, y>0 .
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln (x y)=\frac{1}{x y} y=\frac{1}{x} .
$$

- Right side:

for some constant C. At $x=1$, both sides take the same
\square

Basic Property: $\ln (x y)=\ln x+\ln y$

Lemma

$$
\ln (x y)=\ln x+\ln y, \quad x>0, y>0
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln (x y)=\frac{1}{x y} y=\frac{1}{x} .
$$

- Right side:

$$
\frac{d}{d x}(\ln x+\ln y)=\frac{1}{x}
$$

- Then

$$
\ln (x y)=\ln x+\ln y+C
$$

for some constant C. At $x=1$, both sides take the same value of $\ln y$, thus $C=0$.

Basic Property: $\ln (x y)=\ln x+\ln y$

Lemma

$$
\ln (x y)=\ln x+\ln y, \quad x>0, y>0
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln (x y)=\frac{1}{x y} y=\frac{1}{x} .
$$

- Right side:

$$
\frac{d}{d x}(\ln x+\ln y)=\frac{1}{x}
$$

- Then

$$
\ln (x y)=\ln x+\ln y+C
$$

for some constant C. At $x=1$, both sides take the same value of $\ln y$, thus $C=0$.

Basic Property: $\ln x^{r}=r \ln x$

Lemma

$$
\ln x^{r}=r \ln x \quad(r \text { rational }) .
$$

Proof.

- Left side:

Basic Property: $\ln x^{r}=r \ln x$

Lemma

$$
\ln x^{r}=r \ln x \quad(r \text { rational })
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln x^{r}=\frac{1}{x^{r}} \frac{d}{d x} x^{r}=\frac{1}{x^{r}} r x^{r-1}=r \frac{1}{x} .
$$

- Right side:

Basic Property: $\ln x^{r}=r \ln x$

Lemma

$$
\ln x^{r}=r \ln x \quad(r \text { rational })
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln x^{r}=\frac{1}{x^{r}} \frac{d}{d x} x^{r}=\frac{1}{x^{r}} r x^{r-1}=r \frac{1}{x} .
$$

- Right side:

$$
\frac{d}{d x}(r \ln x)=r \frac{1}{x}
$$

- Then
for some constant C. At $x=1$, both sides are zero, thus $C=0$.

Basic Property: $\ln x^{r}=r \ln x$

Lemma

$$
\ln x^{r}=r \ln x \quad(r \text { rational }) .
$$

Proof.

- Left side:

$$
\frac{d}{d x} \ln x^{r}=\frac{1}{x^{r}} \frac{d}{d x} x^{r}=\frac{1}{x^{r}} r x^{r-1}=r \frac{1}{x} .
$$

- Right side:

$$
\frac{d}{d x}(r \ln x)=r \frac{1}{x}
$$

- Then

$$
\ln x^{r}=r \ln x+C
$$

for some constant C. At $x=1$, both sides are zero, thus $C=0$.

Range $=(-\infty, \infty)$

Theorem
The log function $\ln x$ has range $(-\infty, \infty)$ and

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty .
$$

Proof.

- Let $M>0$ arbitrary in \mathbb{R}. Since $\ln 2>0, \exists n \in \mathbb{N}$ s.t.

$$
n \ln 2>M, \quad-n \ln 2<-M
$$

- Since $n \ln 2=\ln \left(2^{n}\right)$ and $-n \ln 2=\ln \left(2^{-n}\right)$,

Range $=(-\infty, \infty)$

Theorem

The log function $\ln x$ has range $(-\infty, \infty)$ and

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Proof.

- Let $M>0$ arbitrary in \mathbb{R}. Since $\ln 2>0, \exists n \in \mathbb{N}$ s.t.

$$
n \ln 2>M, \quad-n \ln 2<-M .
$$

- Since $n \ln 2=\ln \left(2^{n}\right)$ and $-n \ln 2=\ln \left(2^{-n}\right)$,

Range $=(-\infty, \infty)$

Theorem

The log function $\ln x$ has range $(-\infty, \infty)$ and

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty, \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Proof.

- Let $M>0$ arbitrary in \mathbb{R}. Since $\ln 2>0, \exists n \in \mathbb{N}$ s.t.

$$
n \ln 2>M, \quad-n \ln 2<-M .
$$

- Since $n \ln 2=\ln \left(2^{n}\right)$ and $-n \ln 2=\ln \left(2^{-n}\right)$,

$$
\ln \left(2^{n}\right)>M, \quad \ln \left(2^{-n}\right)<-M .
$$

Limit: $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}=0 \quad \text { for any } r>0
$$

In x grows slower than any positive power as $x \rightarrow \infty$.

Proof.

- Choose a rational number p s.t. $1-r<p<1$. For $x>1$

- Then

Use the pinching theorem to take the limit as

Limit: $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}=0 \quad \text { for any } r>0
$$

In x grows slower than any positive power as $x \rightarrow \infty$.

Proof.

- Choose a rational number p s.t. $1-r<p<1$. For $x>1$,
$\ln x=\int_{1}^{x} \frac{1}{t} d t<\int_{1}^{x} \frac{1}{t^{p}} d t=\left.\frac{1}{1-p} t^{1-p}\right|_{1} ^{x}=\frac{1}{1-p}\left(x^{1-p}-1\right)$
- Then

Use the pinching theorem to take the limit as $x \rightarrow \infty$.

Limit: $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{r}}=0 \quad \text { for any } r>0
$$

In x grows slower than any positive power as $x \rightarrow \infty$.

Proof.

- Choose a rational number p s.t. $1-r<p<1$. For $x>1$,

$$
\ln x=\int_{1}^{x} \frac{1}{t} d t<\int_{1}^{x} \frac{1}{t^{p}} d t=\left.\frac{1}{1-p} t^{1-p}\right|_{1} ^{x}=\frac{1}{1-p}\left(x^{1-p}-1\right)
$$

- Then

$$
0<\frac{\ln x}{x^{r}}<\frac{1}{1-p} \frac{x^{1-p}-1}{x^{r}}=\frac{1}{1-p}\left(x^{1-p-r}-x^{-r}\right)
$$

Use the pinching theorem to take the limit as $x \rightarrow \infty$.

Limit: $\lim _{x \rightarrow 0^{+}} x^{r} \ln x$

Corollary

$$
\lim _{x \rightarrow 0^{+}} x^{r} \ln x=0 \quad \text { for any } r>0
$$

Proof.

Let $y=x^{-1}$. Then

$$
\lim _{x \rightarrow 0^{+}} x^{r} \ln x=\lim _{y \rightarrow \infty} y^{-r} \ln y^{-1}=-\lim _{y \rightarrow \infty} \frac{\ln y}{y^{r}}=0
$$

Limit: $\lim _{x \rightarrow 0^{+}} x^{r} \ln x$

Corollary

$$
\lim _{x \rightarrow 0^{+}} x^{r} \ln x=0 \quad \text { for any } r>0
$$

Proof.

Let $y=x^{-1}$. Then

$$
\lim _{x \rightarrow 0^{+}} x^{r} \ln x=\lim _{y \rightarrow \infty} y^{-r} \ln y^{-1}=-\lim _{y \rightarrow \infty} \frac{\ln y}{y^{r}}=0
$$

Number e

Definition

The number e is defined by

$$
\ln e=1
$$

i.e., the unique number at which $\ln x=1$.

Theorem

In $e^{r}=r \quad$ for any rational number r.

Definition

The number e is defined by

$$
\ln e=1
$$

i.e., the unique number at which $\ln x=1$.

Theorem

$$
\text { In } e^{r}=r \quad \text { for any rational number } r \text {. }
$$

Proof.

Definition

The number e is defined by
$\ln e=1$
i.e., the unique number at which $\ln x=1$.

Theorem

$$
\ln e^{r}=r \quad \text { for any rational number } r \text {. }
$$

Proof.

$$
\ln e^{r}=r \ln e=r
$$

Quiz

1. $\quad \ln 1=?:$
(a) -1 ,
(b) 0 ,
(c) 1 .
2. $\quad \ln e=$?:
(a) 0 ,
(b) 1 ,
(c) e.
3. $\lim _{x \rightarrow 0^{+}} \ln x=$? :
(a) $-\infty$,
(b) 0 ,
(c) ∞.
4. $\lim _{x \rightarrow \infty} \ln x=$?:
(a) $-\infty$,
(b) 0 ,
(c) ∞.

- Definition and Properties of the Natural Log Function
- Definition of the Natural Log Function
- Examples
- Algebraic Properties of the Natural Log Function
- Range and Limits of the Natural Log Function
- Range of the Natural Log Function
- Limits of the Natural Log Function
- Number e

