Lecture 4
 Section 7.4 The Exponential Function Section 7.5 Arbitrary Powers; Other Bases

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

Number e

Definition

The number e is defined by

$$
\ln e=1
$$

i.e., the unique number at which $\ln x=1$.

Remark

Let $L(x)=\ln x$ and $E(x)=e^{x}$ for x rational. Then $L \circ E(x)=\ln e^{x}=x \ln e=x$,

Number e

Definition

The number e is defined by

$$
\ln e=1
$$

i.e., the unique number at which $\ln x=1$.

Remark

Let $L(x)=\ln x$ and $E(x)=e^{x}$ for x rational. Then

$$
L \circ E(x)=\ln e^{x}=x \ln e=x,
$$

i.e., $E(x)$ is the inverse of $L(x)$.

$e^{x}:$ Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0$,

e^{x} : Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0, \quad E \circ L=e^{\ln x}=x$.

$e^{x}:$ Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0, \quad E \circ L=e^{\ln x}=x$.
- $\forall x>0, y=\ln x \quad \Leftrightarrow \quad e^{y}=x$.
- graph $\left(e^{x}\right)$ is the reflection of graph $(\ln x)$ by line $y=x$ $\operatorname{range}(E)=\operatorname{domain}(L)=(0, \infty)$ domain $(E)=\operatorname{range}(L)=(-\infty, \infty)$

$e^{x}:$ Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0, \quad E \circ L=e^{\ln x}=x$.
- $\forall x>0, y=\ln x \quad \Leftrightarrow \quad e^{y}=x$.
- $\operatorname{graph}\left(e^{x}\right)$ is the reflection of $\operatorname{graph}(\ln x)$ by line $y=x$.
- $\operatorname{range}(E)=\operatorname{domain}(L)=(0, \infty)$, domain $(E)=\operatorname{range}(L)=(-\infty, \infty)$

$e^{x}:$ Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0, \quad E \circ L=e^{\ln x}=x$.
- $\forall x>0, y=\ln x \quad \Leftrightarrow \quad e^{y}=x$.
- $\operatorname{graph}\left(e^{x}\right)$ is the reflection of $\operatorname{graph}(\ln x)$ by line $y=x$.
- $\operatorname{range}(E)=\operatorname{domain}(L)=(0, \infty)$, $\operatorname{domain}(E)=\operatorname{range}(L)=(-\infty, \infty)$.

Inverse of $\ln x$

Definition

The exp function $E(x)=e^{x}$ is the inverse of the \log function $L(x)=\ln x$:

$$
L \circ E(x)=\ln e^{x}=x, \quad \forall x .
$$

Properties

- $\ln x$ is the inverse of $e^{x}: \quad \forall x>0, \quad E \circ L=e^{\ln x}=x$.
- $\forall x>0, y=\ln x \quad \Leftrightarrow \quad e^{y}=x$.
- $\operatorname{graph}\left(e^{x}\right)$ is the reflection of $\operatorname{graph}(\ln x)$ by line $y=x$.
- $\operatorname{range}(E)=\operatorname{domain}(L)=(0, \infty)$,

$$
\operatorname{domain}(E)=\operatorname{range}(L)=(-\infty, \infty)
$$

- $\lim _{x \rightarrow-\infty} e^{x}=0 \Leftrightarrow \lim _{x \rightarrow 0^{+}} \ln x=-\infty$,
$\lim _{x \rightarrow \infty} e^{x}=\infty \quad \Leftrightarrow \quad \lim _{x \rightarrow \infty} \ln x=\infty$.

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.

Proof

$$
\ln e^{x+y}=x+y=\ln e^{x}+\ln e^{y}=\ln \left(e^{x} \cdot e^{y}\right)
$$

Since $\ln x$ is one-to-one, then

Algebraic Property

Lemma

$$
e^{x+y}=e^{x} \cdot e^{y}
$$

Proof

$$
\ln e^{x+y}=x+y=\ln e^{x}+\ln e^{y}=\ln \left(e^{x} \cdot e^{y}\right) .
$$

Since $\ln x$ is one-to-one, then

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.

Proof

$$
\ln e^{x+y}=x+y=\ln e^{x}+\ln e^{y}=\ln \left(e^{x} \cdot e^{y}\right) .
$$

Since $\ln x$ is one-to-one, then

$$
e^{x+y}=e^{x} \cdot e^{y}
$$

Algebraic Property

Lemma

$$
\begin{aligned}
& e^{x+y}=e^{x} \cdot e^{y} \\
& e^{-x}=\frac{1}{e^{x}}
\end{aligned}
$$

Proof

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.
- $e^{-x}=\frac{1}{e^{x}}$.

Proof

$$
1=e^{0}=e^{x+(-x)}=e^{x} \cdot e^{-x} \quad \Rightarrow \quad e^{-x}=\frac{1}{e^{x}} .
$$

Algebraic Property

Lemma

```
- \(e^{x+y}=e^{x} \cdot e^{y}\).
- \(e^{-x}=\frac{1}{e^{x}}\).
- \(e^{x-y}=\frac{e^{x}}{e^{y}}\).
```

- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational

Proof

Algebraic Property

Lemma

```
- \(e^{x+y}=e^{x} \cdot e^{y}\).
- \(e^{-x}=\frac{1}{e^{x}}\).
- \(e^{x-y}=\frac{e^{x}}{e^{y}}\).
```

- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational.

Proof

$$
e^{x-y}=e^{x+(-y)}=e^{x} \cdot e^{-y}=e^{x} \cdot \frac{1}{e^{y}}=\frac{e^{x}}{e^{y}} .
$$

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.
- $e^{-x}=\frac{1}{e^{x}}$.
- $e^{x-y}=\frac{e^{x}}{e^{y}}$.
- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational.

Proof

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.
- $e^{-x}=\frac{1}{e^{x}}$.
- $e^{x-y}=\frac{e^{x}}{e^{y}}$.
- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational.

Proof

- For $r=\frac{1}{n}, n \in \mathbb{N}$ and $n \neq 0$,

- For r rational, let $r=\frac{m}{n}, m, n \in \mathbb{N}$ and $n \neq 0$. Then

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.
- $e^{-x}=\frac{1}{e^{x}}$.
- $e^{x-y}=\frac{e^{x}}{e^{y}}$.
- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational.

Proof

- For $r=m \in \mathbb{N}, e^{m x}=e^{\overbrace{x+\cdots+x}^{m}}=\overbrace{e^{x} \cdots e^{x}}^{m}=\left(e^{x}\right)^{m}$.
- For $r=\frac{1}{n}, n \in \mathbb{N}$ and $n \neq 0$,

$$
e^{x}=e^{\frac{n}{n} x}=\left(e^{\frac{1}{n} x}\right)^{n} \quad \Rightarrow \quad e^{\frac{1}{n} x}=\left(e^{x}\right)^{\frac{1}{n}} .
$$

- For r rational, let $r=\frac{m}{n}, m, n \in \mathbb{N}$ and $n \neq 0$. Then

Algebraic Property

Lemma

- $e^{x+y}=e^{x} \cdot e^{y}$.
- $e^{-x}=\frac{1}{e^{x}}$.
- $e^{x-y}=\frac{e^{x}}{e^{y}}$.
- $e^{r x}=\left(e^{x}\right)^{r}, \forall r$ rational.

Proof

- For $r=m \in \mathbb{N}, e^{m x}=e^{\overbrace{x+\cdots+x}^{m}}=\overbrace{e^{x} \cdots e^{x}}^{m}=\left(e^{x}\right)^{m}$.
- For $r=\frac{1}{n}, n \in \mathbb{N}$ and $n \neq 0$,

$$
e^{x}=e^{\frac{n}{n} x}=\left(e^{\frac{1}{n} x}\right)^{n} \quad \Rightarrow \quad e^{\frac{1}{n} x}=\left(e^{x}\right)^{\frac{1}{n}} .
$$

- For r rational, let $r=\frac{m}{n}, m, n \in \mathbb{N}$ and $n \neq 0$. Then

$$
e^{r x}=e^{\frac{m}{n} x}=\left(e^{\frac{1}{n} x}\right)^{m}=\left(\left(e^{x}\right)^{\frac{1}{n}}\right)^{m}=\left(e^{x}\right)^{\frac{m}{n}}=\left(e^{x}\right)^{r} .
$$

Derivatives

Lemma

$$
\frac{d}{d x} e^{x}=e^{x} \Rightarrow \int e^{x} d x=e^{x}+C .
$$

and positive

Proof

Since $E(x)=e^{x}$ is the inverse of $L(x)=\ln x$, then with $y=e^{x}$,

$$
\frac{d}{d x} e^{x}=E^{\prime}(x)=\frac{1}{L^{\prime}(y)}=\frac{1}{(\ln y)^{\prime}}=\frac{1}{\frac{1}{y}}=y=e^{x}
$$

Derivatives

Lemma

$$
\frac{d}{d x} e^{x}=e^{x} \Rightarrow \int e^{x} d x=e^{x}+C
$$

Proof

Since $E(x)=e^{x}$ is the inverse of $L(x)=\ln x$, then with $y=e^{x}$,

$$
\frac{d}{d x} e^{x}=E^{\prime}(x)=\frac{1}{L^{\prime}(y)}=\frac{1}{(\ln y)^{\prime}}=\frac{1}{\frac{1}{y}}=y=e^{x}
$$

Derivatives

Lemma

$\frac{d}{d x} e^{x}=e^{x} \Rightarrow \int e^{x} d x=e^{x}+C$.
$\frac{d^{m}}{d x^{m}} e^{x}=e^{x}>0 \Rightarrow E(x)=e^{x}$ is concave up, increasing,
and positive.

Proof

First, for $m=1$, it is true. Next, assume that it is true for k, then

By the axiom of induction, it is true for all positive integer m.

Derivatives

Lemma

- $\frac{d}{d x} e^{x}=e^{x} \Rightarrow \int e^{x} d x=e^{x}+C$.
- $\frac{d^{m}}{d x^{m}} e^{x}=e^{x}>0 \Rightarrow E(x)=e^{x}$ is concave up, increasing, and positive.

Proof

First, for $m=1$, it is true. Next, assume that it is true for k, then

$$
\frac{d^{k+1}}{d x^{k+1}} e^{x}=\frac{d}{d x}\left(\frac{d^{k}}{d x^{k}} e^{x}\right)=\frac{d}{d x}\left(e^{x}\right)=e^{x} .
$$

By the axiom of induction, it is true for all positive integer m.

e^{x} : as the series $\sum_{k=0}^{\infty} \frac{\chi^{k}}{k!}$

Definition

(Section 11.5)

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{x^{k}}{k!}\right), \quad \forall x \in R . \\
(k! & =1 \cdot 2 \cdots k)
\end{aligned}
$$

Number e

e^{x} : as the series $\sum_{k=0}^{\infty} \frac{x^{k}}{k l}$

Definition

(Section 11.5)

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{x^{k}}{k!}\right), \quad \forall x \in R . \\
(k! & =1 \cdot 2 \cdots k)
\end{aligned}
$$

Number e
$e=\sum_{k=0}^{\infty} \frac{1}{k!}=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\cdots=\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{1}{k!}\right)$.

Definition

(Section 11.5)

$$
\begin{aligned}
e^{x} & =\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{x^{k}}{k!}\right), \quad \forall x \in R \\
(k! & =1 \cdot 2 \cdots k)
\end{aligned}
$$

Numbere

- $e=\sum_{k=0}^{\infty} \frac{1}{k!}=1+\frac{1}{1}+\frac{1}{1 \cdot 2}+\frac{1}{1 \cdot 2 \cdot 3}+\cdots=\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} \frac{1}{k!}\right)$.
- $e \approx 2.71828182845904523536 \ldots$

Limit: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty, \quad \forall n \in \mathbb{N}
$$

Proof.

- Recall that

- For large $x>0$,

Limit: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty, \quad \forall n \in \mathbb{N}
$$

Proof.

- Recall that

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{1 \cdot 2 \cdot 3}+\cdots
$$

- For large $x>0$,

Limit: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty, \quad \forall n \in \mathbb{N} .
$$

Proof.

- Recall that

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{1 \cdot 2 \cdot 3}+\cdots
$$

- For large $x>0$,

$$
e^{x}>\frac{x^{p}}{p!} \Rightarrow \frac{e^{x}}{x^{n}}>\frac{x^{p-n}}{p!}
$$

Limit: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}$

Theorem

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty, \quad \forall n \in \mathbb{N} .
$$

Proof.

- Recall that

$$
e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+\frac{x}{1}+\frac{x^{2}}{1 \cdot 2}+\frac{x^{3}}{1 \cdot 2 \cdot 3}+\cdots .
$$

- For large $x>0$,

$$
e^{x}>\frac{x^{p}}{p!} \Rightarrow \frac{e^{x}}{x^{n}}>\frac{x^{p-n}}{p!}
$$

- For $p>n, \lim _{x \rightarrow \infty} x^{p-n}=\infty$, then $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty$.

Quiz

1. domain of $\ln \left(1+x^{2}\right)$:
(a) $x>1$,
(b) $x>-1$,
(c) any x.
2. domain of $\ln \left(x \sqrt{4+x^{2}}\right)$:
(a) $x \neq 0$,
(b) $x>0$, (c) any x.

Differentiation: Chain Rule

Lemma
 $$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

Proof

By the chain rule,

Examples

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

$$
\frac{d}{d x} e^{k x}
$$

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

$$
\frac{d}{d x} e^{k x}=e^{k x} \cdot k=k e^{k x}
$$

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

$$
\frac{d}{d x} e^{\sqrt{x}}=e^{\sqrt{x}} \cdot \frac{d}{d x} \sqrt{x}=e^{\sqrt{x}} \cdot \frac{1}{2 \sqrt{x}} y=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}
$$

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x} .
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

$$
\begin{equation*}
\frac{d}{d x} e^{-x^{2}} \tag{d}
\end{equation*}
$$

Differentiation: Chain Rule

Lemma

$$
\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}
$$

Proof

By the chain rule,

$$
\frac{d}{d x} e^{u}=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x}
$$

Examples

$$
\frac{d}{d x} e^{-x^{2}}=e^{-x^{2}} \frac{d}{d x}\left(-x^{2}\right)=e^{-x^{2}}(-2 x)=-2 x e^{-x^{2}}
$$

Examples: Chain Rule

Examples

$$
\frac{d}{d x} e^{4 \ln x}
$$

Solution

Simplify it before the differentiation:

Examples: Chain Rule

Examples

- $\frac{d}{d x} e^{4 \ln x}$.

Solution

Simplify it before the differentiation:

$$
e^{4 \ln x}=\left(e^{\ln x}\right)^{4}=x^{4} \quad \Rightarrow \quad \frac{d}{d x} e^{4 \ln x}=\frac{d}{d x} x^{4}=4 x^{3} .
$$

Examples: Chain Rule

Examples

- $\frac{d}{d x} e^{\sin 2 x}$.

Solution

By the chain rule,

$$
\frac{d}{d x} e^{\sin 2 x}=e^{\sin 2 x} \frac{d}{d x} \sin 2 x=e^{\sin 2 x} \cdot 2 \cos 2 x
$$

Examples: Chain Rule

Examples

$$
\begin{aligned}
& \frac{d}{d x} e^{\sin 2 x} \\
& \frac{d}{d x} \ln \left(\cos e^{2 x}\right)
\end{aligned}
$$

Solution

By the chain rule,

$$
\frac{d}{d x} e^{\sin 2 x}=e^{\sin 2 x} \frac{d}{d x} \sin 2 x=e^{\sin 2 x} \cdot 2 \cos 2 x
$$

Examples: Chain Rule

Examples

$$
\frac{d}{d x} \ln \left(\cos e^{2 x}\right)
$$

Solution

By the chain rule,

Examples: Chain Rule

Examples

$$
\frac{d}{d x} \ln \left(\cos e^{2 x}\right)
$$

Solution

By the chain rule,

$$
\frac{d}{d x} \ln \left(\cos e^{2 x}\right)=\frac{1}{\cos e^{2 x}} \cdot\left(-\sin e^{2 x}\right) \cdot \frac{d}{d x} e^{2 x}=-2 e^{2 x} \tan e^{2 x} .
$$

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
Determine the symmetry of graph and asymptotes.

Solution

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
Determine the symmetry of graph and asymptotes.

Solution

Since $f(-x)=e^{-\frac{(-x)^{2}}{2}}=e^{-\frac{x^{2}}{2}}=f(x)$ and
$\lim _{x \rightarrow \pm \infty} e^{-\frac{(-x)^{2}}{2}}=0$, the graph is symmetry w.r.t.
the y-axis, and the x-axis is a horizontal asymptote.

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
On what intervals does f increase? Decrease? Find the extrem values of f.

Solution

- We have

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
On what intervals does f increase? Decrease?
Find the extrem values of f.

Solution

- We have

$$
f^{\prime}(x)=e^{-\frac{x^{2}}{2}}(-x)=-x e^{-\frac{x^{2}}{2}} .
$$

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
On what intervals does f increase? Decrease?
Find the extrem values of f.

Solution

- We have

$$
f^{\prime}(x)=e^{-\frac{x^{2}}{2}}(-x)=-x e^{-\frac{x^{2}}{2}}
$$

- Thus $f \uparrow$ on $(-\infty, 0)$ and \downarrow on $(0, \infty)$.
- At $x=0, f^{\prime}(x)=0$. Thus

is the (only) local and absolute maximum

Graph of $f(x)=e^{-\frac{x}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.
On what intervals does f increase? Decrease? Find the extrem values of f.

Solution

- We have

$$
f^{\prime}(x)=e^{-\frac{x^{2}}{2}}(-x)=-x e^{-\frac{x^{2}}{2}}
$$

- Thus $f \uparrow$ on $(-\infty, 0)$ and \downarrow on $(0, \infty)$.
- At $x=0, f^{\prime}(x)=0$. Thus

$$
f(0)=e^{0}=1
$$

is the (only) local and absolute maximum.

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.

Determine the concavity and inflection points.

Solution

$$
\text { From } f^{\prime}(x)=-x e^{-\frac{x^{2}}{2}}, \text { we have }
$$

\square
 - At $x=+1, f^{\prime \prime}(x)=0$. Then the granh is concave up on $(-\infty,-1)$ and $(1, \infty)$; the graph is concave down on $(-1,1)$

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.

Determine the concavity and inflection points.

Solution

- From $f^{\prime}(x)=-x e^{-\frac{x^{2}}{2}}$, we have

$$
f^{\prime \prime}(x)=-e^{-\frac{x^{2}}{2}}+x^{2} e^{-\frac{x^{2}}{2}}=\left(x^{2}-1\right) e^{-\frac{x^{2}}{2}}
$$

- At $x= \pm 1, f^{\prime \prime}(x)=0$. Then, the graph is concave up on $(-\infty,-1)$ and $(1, \infty)$; the graph is concave down on $(-1,1)$
- The points

are points of inflection

Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.

Determine the concavity and inflection points.

Solution

- From $f^{\prime}(x)=-x e^{-\frac{x^{2}}{2}}$, we have

$$
f^{\prime \prime}(x)=-e^{-\frac{x^{2}}{2}}+x^{2} e^{-\frac{x^{2}}{2}}=\left(x^{2}-1\right) e^{-\frac{x^{2}}{2}}
$$

- At $x= \pm 1, f^{\prime \prime}(x)=0$. Then, the graph is concave up on $(-\infty,-1)$ and $(1, \infty)$; the graph is concave down on $(-1,1)$.
- The points

[^0]
Graph of $f(x)=e^{-\frac{x^{2}}{2}}$

Example

Let $\quad f(x)=e^{-\frac{x^{2}}{2}}$.

Determine the concavity and inflection points.

Solution

- From $f^{\prime}(x)=-x e^{-\frac{x^{2}}{2}}$, we have

$$
f^{\prime \prime}(x)=-e^{-\frac{x^{2}}{2}}+x^{2} e^{-\frac{x^{2}}{2}}=\left(x^{2}-1\right) e^{-\frac{x^{2}}{2}}
$$

- At $x= \pm 1, f^{\prime \prime}(x)=0$. Then, the graph is concave up on $(-\infty,-1)$ and $(1, \infty)$; the graph is concave down on $(-1,1)$.
- The points

$$
(\pm 1, f(\pm 1))=\left(\pm 1, e^{-\frac{1}{2}}\right)
$$

are points of inflection.

Quiz (cont.)

Quiz (cont.)

$$
\begin{array}{llll}
\text { 3. } \frac{d}{d x}(\ln |x|)=?: & \text { (a) } \frac{1}{x}, & \text { (b) } \frac{1}{|x|}, & \text { (c) }-\frac{1}{x} . \\
\text { 4. } \int x^{-1} d x=?: & \text { (a) } \ln x+C, & \text { (b) } \ln |x|+C, & \text { (c) } x^{-1}+C .
\end{array}
$$

Integration: u-Substitution

Theorem

$$
\int e^{g(x)} g^{\prime}(x) d x=e^{g(x)}+C .
$$

Proof.
Let $u=g(x)$, thus $d u=g^{\prime}(x) d x$, then

Integration: u-Substitution

Theorem

$$
\int e^{g(x)} g^{\prime}(x) d x=e^{g(x)}+C .
$$

Proof.

Let $u=g(x)$, thus $d u=g^{\prime}(x) d x$, then

$$
\int e^{g(x)} g^{\prime}(x) d x=\int e^{u} d u=e^{u}+C=e^{g(x)}+C
$$

Integration: u-Substitution

Theorem

$$
\int e^{g(x)} g^{\prime}(x) d x=e^{g(x)}+C .
$$

Proof.

Let $u=g(x)$, thus $d u=g^{\prime}(x) d x$, then

$$
\int e^{g(x)} g^{\prime}(x) d x=\int e^{u} d u=e^{u}+C=e^{g(x)}+C
$$

Example

Calculate $\int x e^{-\frac{x^{2}}{2}} d x$.
Let $u=-\frac{x^{2}}{2}$, thus $d u=-x d x$, then

Integration: u-Substitution

Theorem

$$
\int e^{g(x)} g^{\prime}(x) d x=e^{g(x)}+C
$$

Proof.

Let $u=g(x)$, thus $d u=g^{\prime}(x) d x$, then

$$
\int e^{g(x)} g^{\prime}(x) d x=\int e^{u} d u=e^{u}+C=e^{g(x)}+C .
$$

Example

Calculate $\int x e^{-\frac{x^{2}}{2}} d x$.
Let $u=-\frac{x^{2}}{2}$, thus $d u=-x d x$, then

$$
\int x e^{-\frac{x^{2}}{2}} d x=-\int e^{u} d u=-e^{u}+C=-e^{-\frac{x^{2}}{2}}+C
$$

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

Example

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.

Example

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.
$x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r-s}=\frac{x^{r}}{x^{s}}, \quad x^{r s}=\left(x^{r}\right)^{s}$
$\frac{d}{d x} x^{r}=r x^{r-1}, \Rightarrow \int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, for $r \neq-1$

Example

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.
- $x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r-s}=\frac{x^{r}}{x^{s}}, \quad x^{r s}=\left(x^{r}\right)^{s}$
$\frac{d}{d x} x^{r}=r x^{r-1}, \Rightarrow \int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, for $r \neq-1$

Example

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.
- $x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r-s}=\frac{x^{r}}{x^{s}}, \quad x^{r s}=\left(x^{r}\right)^{s}$
$\frac{d}{d x} x^{r}=r x^{r-1}, \Rightarrow \int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, for $r \neq-1$

Example

$$
\frac{d}{d x}\left(x^{2}+1\right)^{3 x}
$$

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.
o $x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r-s}=\frac{x^{r}}{x^{s}}, \quad x^{r s}=\left(x^{r}\right)^{s}$
$\frac{d}{d x} x^{r}=r x^{r-1}, \Rightarrow \int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, for $r \neq-1$

Example

$$
\begin{equation*}
\frac{d}{d x}\left(x^{2}+1\right)^{3 x}=\frac{d}{d x} e^{3 x \ln \left(x^{2}+1\right)} \tag{2}
\end{equation*}
$$

Arbitrary Powers: $f(x)=x^{r}$

Definition

For z irrational, we define $x^{z}=e^{z \ln x}, \quad x>0$.
Properties (r and s real numbers)

- For $x>0, x^{r}=e^{r \ln x}$.
- $x^{r+s}=x^{r} \cdot x^{s}, \quad x^{r-s}=\frac{x^{r}}{x^{s}}, \quad x^{r s}=\left(x^{r}\right)^{s}$
$\frac{d}{d x} x^{r}=r x^{r-1}, \Rightarrow \int x^{r} d x=\frac{x^{r+1}}{r+1}+C$, for $r \neq-1$

Example

$$
\begin{aligned}
\frac{d}{d x} & \left(x^{2}+1\right)^{3 x}=\frac{d}{d x} e^{3 x \ln \left(x^{2}+1\right)}=e^{3 x \ln \left(x^{2}+1\right)} \frac{d}{d x}\left(3 x \ln \left(x^{2}+1\right)\right) \\
& =e^{3 x \ln \left(x^{2}+1\right)}\left(\frac{6 x^{2}}{x^{2}+1}+3 \ln \left(x^{2}+1\right)\right)
\end{aligned}
$$

Other Bases: $f(x)=p^{x}, p>0$

Definition

For $p>0$, the function

$$
f(x)=p^{x}=e^{x \ln p}
$$

is called the exp function with base p.

Properties

Other Bases: $f(x)=p^{x}, p>0$

Definition

For $p>0$, the function

$$
f(x)=p^{x}=e^{x \ln p}
$$

is called the exp function with base p.

Properties

$$
\frac{d}{d x} p^{x}=p^{x} \ln p \quad \Rightarrow \quad \int p^{x} d x=\frac{1}{\ln p} p^{x}+C, \text { for } p>0, p \neq 1
$$

Other Bases: $f(x)=\log _{p} x, p>0$

Definition

For $p>0$, the function

$$
f(x)=\log _{p} x=\frac{\ln x}{\ln p}
$$

is called the log function with base p.

Properties

Other Bases: $f(x)=\log _{p} x, p>0$

Definition

For $p>0$, the function

$$
f(x)=\log _{p} x=\frac{\ln x}{\ln p}
$$

is called the log function with base p.

Properties

$$
\frac{d}{d x} \log _{p} x=\frac{1}{x \ln p} .
$$

- Definition and Properties of the Exp Function
- Definition of the Exp Function
- Properties of the Exp Function
- Another Definition of the Exp Function
- Differentiation and Graphing
- Chain Rule
- Graphing
- Integration
- u-Substitution
- Arbitrary Powers
- Arbitrary Powers
- Other Bases

[^0]: are points of inflection

