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Definition and Properties Differentiation Integration Arbitrary

Number e

Definition

The number e is defined by
Ine=1

i.e., the unique number at which
Inx = 1.
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Definition and Properties Differentiation Integration Arbitrary

Number e

Definition

The number e is defined by
Ine=1

i.e., the unique number at which
Inx = 1.

Let L(x) = Inx and E(x) = €* for x rational. Then

LoE(x)=Ine*=xlne=x,

i.e., E(x) is the inverse of L(x).
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e*: Inverse of In x
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Definition
The exp function E(x) = €~ is the
inverse of the log function L(x) = Inx:

LoE(x)=Ine"=x, Vx.
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e*: Inverse of In x

Definition
) | The exp function E(x) = €~ is the
= inverse of the log function L(x) = Inx:
o .
/ LoE(x)=Ine"=x, Vx.

Properties

@ Inx is the inverse of € Vx>0, Eol=¢""=x.

eVx>0,y=Ihx < & =x.
o graph(eX) is the reflection of graph(Inx) by line y = x.
@ range(E) = domain(L) = (0, c0),

domain(E) = range(L) = (—o0, 00).
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e*: Inverse of In x

Definition
| The exp function E(x) = e* is the
o, inverse of the log function L(x) = Inx:
o x
/ LoE(x)=Ine"=x, Vx.

Inx is the inverse of €1 Vx>0, Eol=é"=x.

Vx>0,y=Ihx & & =x.

graph(eX) is the reflection of graph(Inx) by line y = x.
range(E) = domain(L) = (0, o0),

domain(E) = range(L) = (—o0, 00).

e 6 o o

o Ilim &=0 < lim Inx = —oc0,
X——00 x—0Tt
im e¥ =00 & lim Inx = oo. [lll
X—00 X—0Q
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Algebraic Property

Proof

|
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Algebraic Property

Ine*™ =x+y=Ine“+Ine’ =In(e*-¢).
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Algebraic Property

Ine*™ =x+y=Ine“+Ine’ =In(e*-¢).

Since In x is one-to-one, then

e =e¢.
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Algebraic Property

e ™ = (e¥)", Vr rational.
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@ Forr=meN, e™=¢XT " TX_"x... o= ()™
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Algebraic Property

Lemma

0 &Y =¢X. ¢,

1

0 e =,
eX

_ eX

0 eV =,
ey

e ™ = (e¥)", Vr rational.

Proof

m m
@ Forr=meN, e™=¢XT " TX_"x... o= ()™
) Forr:%,neNand n # 0,

e = e%x = (e%x)n = enX = (eX)

Jiwen He, University of Houston



Definition and Properties Differentiation Integration Arbitrary

Algebraic Property

e ™ = (e¥)", Vr rational.

/—/% ——
X T X

@ Forr=meN, e™
oForr:;,neNa,?dn;éO, 1
n 1 1

eX = en* = (eﬁx) = eEX:(eX)E_

@ For r rational, let r =2, m, n€ N and n# 0. Then

n'

e = X = (e%X)'" — ((eX)%) = ()7 = (). |
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Derivatives

Since E(x) = e* is the inverse of L(x) = Inx, then with y = ¥,

d 1 1

e =Ek= U(y) ~ (nyy —

:y:e .

S<I=| =
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Derivatives

o —eX=¢e">0 = E(x)=e"isconcave up, increasing,
and positive.
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Derivatives

o —eX=¢e">0 = E(x)=e"isconcave up, increasing,
and positive.

First, for m =1, it is true. Next, assume that it is true for k, then

dk+1 X d dk X d X X
() = e~.

a1 T \dxk© ) T dx

By the axiom of induction, it is true for all positive integer m.
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e*: as the series )

(Section 11.5)
ok 2 3
x N~ X X X
e—zk! Lfx+op+3+:
k=0
& k
_ X
= nll_)n;o F 9 Vx € R.
k=0
(k!l=1-2---k)
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0 kI

(Section 11.5)

k X2 X3
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e*:

) 0o ok
as the series > ” o &

(Section 11.5)

1
1 o ( )
k=0 ’ Ea k=0

0 e~ 2.71828182845904523536 . . . [lll
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Limit: lim,_

Theorem
. e
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Limit: limy o S

X

Iime—:oo, Vn e N.
X—00 X
o Recall that
© K 2 3
N X X
= —:1 — _—
=D =1+ t12t123"
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Limit: lim,_

X
Theorem

eX
lim — =00, VneN.
X—00 X
o Recall that
© K 2 3
N X X
=y T =1+24+ 2
=) a=ltitistrast
k=0
o For large x > 0,
xP ex  xPN
> — = —>—
p! X" p!
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Limit: limy_

X
Theorem

eX
lim — =00, VneN.
X—00 X
o Recall that
ii LxL X
— k! 1 1.2 1-2.3
o For large x > 0,
xP eX xP—n
eX > — = = > =,
p! X" p!
eX
@ For p>n, lim xP7" = oo, then lim — = oo. ] [lll
X—00 x—o00 XN
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Quiz

1. domain of In(1+ x?) : (@) x>1, (b)x>-1, (c)anyx

2. domain of In(x\/4+x2): (a) x#0, (b) x>0, (c)anyx
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Differentiation: Chain Rule
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Differentiation: Chain Rule

u
v
Examples

/e
° die\f evx. f—e\[ i

2fy_2f
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Differentiation: Chain Rule

v
Examples

° ie_x2 [Fl

dx
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Differentiation: Chain Rule

v
Examples

d_X2__Xzi_2__X2_ _ 2
o&e =e dx( x)fe (—2x) = —2xe™ . [H
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Examples: Chain Rule

41n x

A
dx
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Examples: Chain Rule

d
° 7e4|nx
dx

Simplify it before the differentiation:

4 d
etinx _ (elnx) = = —etnx — T4 23
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Examples: Chain Rule

d ..
@ —sin 2x.

dx
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Examples: Chain Rule

d ..
@ —sin 2x.

dx

By the chain rule,

d . oy d . i
7 asin2x esm2xi sin2x = esm2x .- 2cos 2x
dx dx
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Examples: Chain Rule

d X
° aln (cose2 ).
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Examples: Chain Rule

By the chain rule,

i In (cos e2x) =

dx
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Graph of f(x) = e 2

Example

X2

Let f(x)=e 2.
Determine the symmetry of graph and

asymptotes.
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Example

X2

Let f(x)=e 2.
Determine the symmetry of graph and
asymptotes.

fl)=
(= <2
A —— Since f(—x)=e" 2 =-e 2 =f(x) and

— . =2 .

lim e~ 2 =0, the graph is symmetry w.r.t.
x—F00
the y-axis, and the x-axis is a horizontal
asymptote.

Jiwen He, University of Houston
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Graph of f(x) = e 2

Example

X2
Let f(x)=e 2.
On what intervals does f increase? Decrease?
Find the extrem values of f.

= este Solution
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Graph of f(x) = e 2

Example

X2
Let f(x)=e 2.
On what intervals does f increase? Decrease?
Find the extrem values of f.

= este Solution

@ We have
Fi s :‘ f-/(X) — e_

oW
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Graph of f(x) = e 2

Example

X2
Let f(x)=e 2.
On what intervals does f increase? Decrease?
Find the extrem values of f.

= este Solution

@ We have
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Graph of f(x) = e 2

Example

X2
Let f(x)=e 2.
On what intervals does f increase? Decrease?
Find the extrem values of f.

1

Solution
@ We have , )
e ; f/(X) = e_%(—X) = —Xe_%-

@ Thus f T on (—00,0) and | on (0, 00).
@ At x =0, f/(x) =0. Thus
f0)=e"=1
is the (only) local and absolute maximum.

¥
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Graph of f(x) = e 2

><2
Let f(x)=e 2.
Determine the concavity and inflection points.
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Graph of f(x) = e 2

><2
Let f(x)=e 2.
Determine the concavity and inflection points.

X2
@ From f/(x) = —xe™ 7, we have
2 x2 )<2
f'(x) = —e" 7 +x%e 2 = (x> —1)e 2.
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Graph of f(x) = e 2

2

Let f(x)=e 2.
Determine the concavity and inflection points.

@ From f/(x) = —xe
2

2

flix)=—e"2 +x%e"2 = (x* —1)e” 7,

——— o At x = £1, f”(x) = 0. Then, the graph is
: oo concave up on (—oo, —1) and (1, 00); the
graph is concave down on (—1,1).

Jiwen He, University of Houston



Definition and Properties Differentiation Inteyiation Arbitrary

Graph of f(x) = e 2

><2
Let f(x)=e 2.
Determine the concavity and inflection points.

@ From f/(x) = —xe
2

2, we have
2
X

2

f(x)=—e 7 +x%e" 7 = (x> —1)e” 2.

— o At x = +1, f”’(x) = 0. Then, the graph is
s concave up on (—oo,—1) and (1, 00); the
graph is concave down on (—1,1).

@ The points
1
(£1,f(£1)) = (£1,e"2)
are points of inflection. [

Jiwen He, University of Houston
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Quiz (cont.)

(b) = () .

xI" X

3. %(In\xb =?7: (a)

X |~

4. /x—ldx:?: (@) Inx+C, (b)In|x|+C, (c)x*+C.

v
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Integration: u-Substitution

/eg(x)g'(x) dx = e8™) 4 C.

Jiwen He, University of Houston



Definition and Properties Differentiation Integration Arbitrary

Integration: u-Substitution

/eg(x)g'(x) dx = e8™) 4 C.

Let u = g(x), thus du = g'(x)dx, then

/eg(x)g'(x) dx = /e”du —e'+ C=ef™ 1 C
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Integration: u-Substitution

Theorem

/eg(x)g'(x) dx = e8™) 4 C.

Proof.
Let u = g(x), thus du = g'(x)dx, then

/eg(x)g'(x) dx = /e”du —e'+ C=ef™ 1 C

|

Example

X2
Calculate /xez dx.

Jiwen He, University of Houston
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Integration: u-Substitution

Theorem

/eg(x)g'(x) dx = e8™) 4 C.

Proof.
Let u = g(x), thus du = g'(x)dx, then

/eg(x)g'(x) dx = /e”du —e'+ C=ef™ 1 C

|

Example

X2
Calculate /xez dx.

2
Let u = —X7, thus du = —xdx, then

/xe2dx:—/e”du:—e“+C:—e2+C. [l]l
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Arbitrary Powers: f(x) = x"

Definition

For z irrational, we define x? = ™%, x> 0.

Properties (r and s real numbers)
o
o

Example

Jiwen He, University of Houston
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Arbitrary Powers: f(x) = x"

Definition

For z irrational, we define x? = ™%, x> 0.

Properties (r and s real numbers)

@ For x >0, x" = enx,

o
Example
o
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Arbitrary Powers: f(x) = x"

Definition
For z irrational, we define x? = ™%, x> 0.
Properties (r and s real numbers)
@ For x >0, x" = e"nx,
Xr
° Xr+s — x. Xs’ x—s — = X' = (Xr)s
XS
Xr+1
+ C, for r # —1.
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Arbitrary Powers: f(x) = x"

Definition

For z irrational, we define x? = ™%, x> 0.

Properties (r and s real numbers)

@ For x >0, x" = e"nx,
s X
° Xr+s — x. Xs’ x—s — = X' = (Xr)s
XS
d 3 Xr+1
o —x' =1 = x"dx =——+ C, forr# —1.
dx r+1

2 3x d 3uin(x+1
&(X +1) :&e o AL
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Arbitrary Powers: f(x) = x"

Definition

For z irrational, we define x? = ™%, x> 0.

Properties (r and s real numbers)

@ For x >0, x" = enx,

_ X
° Xr+s — x. Xs’ x—s — = X' = (Xr)s
xS
d 3 Xr+1
o —x' =1 = x"dx = + C, forr# —1.
dx r+1

di),( (x* + 1)3X = %63“““2“) = e3X'”(X2+1)dii (3xIn(x* + 1))

2
_ 3xIn(x2+1) bx In(x2 + 1
e <+ 1 +3In(x* +1) [H

x2
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Other Bases: f(x

For p > 0, the function

f(X) — px _ exlnp

is called the exp function with base p.
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Other Bases: f(x) =p*, p >0

For p > 0, the function

f(X) — px _ exlnp

is called the exp function with base p.

d 1
—p =p lnp = /pde:px—i—C, forp>0,p#1
dx Inp

Jiwen He, University of Houston
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Other Bases: f(x) = log,x, p >0

For p > 0, the function

In x

f(X) = IngX = E

is called the log function with base p.
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Other Bases: f(x) = log,x, p >0

For p > 0, the function

In x

f(X) = IngX = E

is called the log function with base p.

d 1
alogpx = —

A

Jiwen He, University of Houston
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Outline

@ Definition and Properties of the Exp Function
o Definition of the Exp Function
e Properties of the Exp Function
o Another Definition of the Exp Function

@ Differentiation and Graphing
e Chain Rule
o Graphing

@ Integration
o y-Substitution

o Arbitrary Powers
o Arbitrary Powers
o Other Bases [lll
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