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Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Number e

Definition

The number e is defined by

ln e = 1

i.e., the unique number at which
ln x = 1.

Remark

Let L(x) = ln x and E (x) = ex for x rational. Then

L ◦ E (x) = ln ex = x ln e = x ,

i.e., E (x) is the inverse of L(x).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 2 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Number e

Definition

The number e is defined by

ln e = 1

i.e., the unique number at which
ln x = 1.

Remark

Let L(x) = ln x and E (x) = ex for x rational. Then

L ◦ E (x) = ln ex = x ln e = x ,

i.e., E (x) is the inverse of L(x).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 2 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

ex : Inverse of ln x

Definition

The exp function E (x) = ex is the
inverse of the log function L(x) = ln x :

L ◦ E (x) = ln ex = x , ∀x .

Properties

ln x is the inverse of ex : ∀x > 0, E ◦ L = e ln x = x .

∀x > 0, y = ln x ⇔ ey = x .

graph(ex) is the reflection of graph(ln x) by line y = x .

range(E ) = domain(L) = (0,∞),
domain(E ) = range(L) = (−∞,∞).

lim
x→−∞

ex = 0 ⇔ lim
x→0+

ln x = −∞,

lim
x→∞

ex = ∞ ⇔ lim
x→∞

ln x = ∞.
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Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

ln ex+y = x + y = ln ex + ln ey = ln (ex · ey ) .

Since ln x is one-to-one, then

ex+y = ex · ey .
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Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

1 = e0 = ex+(−x) = ex · e−x ⇒ e−x =
1

ex
.
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Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

For r = m ∈ N, emx = e

m︷ ︸︸ ︷
x + · · ·+ x =

m︷ ︸︸ ︷
ex · · · ex = (ex)m.

For r = 1
n , n ∈ N and n 6= 0,

ex = e
n
n
x =

(
e

1
n
x
)n

⇒ e
1
n
x = (ex)

1
n .

For r rational, let r = m
n , m, n ∈ N and n 6= 0. Then

erx = e
m
n
x =

(
e

1
n
x
)m

=
(
(ex)

1
n

)m
= (ex)

m
n = (ex)r .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 4 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

For r = m ∈ N, emx = e

m︷ ︸︸ ︷
x + · · ·+ x =

m︷ ︸︸ ︷
ex · · · ex = (ex)m.

For r = 1
n , n ∈ N and n 6= 0,

ex = e
n
n
x =

(
e

1
n
x
)n

⇒ e
1
n
x = (ex)

1
n .

For r rational, let r = m
n , m, n ∈ N and n 6= 0. Then

erx = e
m
n
x =

(
e

1
n
x
)m

=
(
(ex)

1
n

)m
= (ex)

m
n = (ex)r .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 4 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

For r = m ∈ N, emx = e

m︷ ︸︸ ︷
x + · · ·+ x =

m︷ ︸︸ ︷
ex · · · ex = (ex)m.

For r = 1
n , n ∈ N and n 6= 0,

ex = e
n
n
x =

(
e

1
n
x
)n

⇒ e
1
n
x = (ex)

1
n .

For r rational, let r = m
n , m, n ∈ N and n 6= 0. Then

erx = e
m
n
x =

(
e

1
n
x
)m

=
(
(ex)

1
n

)m
= (ex)

m
n = (ex)r .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 4 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Algebraic Property

Lemma

ex+y = ex · ey .

e−x =
1

ex
.

ex−y =
ex

ey
.

erx = (ex)r , ∀r rational.

Proof

For r = m ∈ N, emx = e

m︷ ︸︸ ︷
x + · · ·+ x =

m︷ ︸︸ ︷
ex · · · ex = (ex)m.

For r = 1
n , n ∈ N and n 6= 0,

ex = e
n
n
x =

(
e

1
n
x
)n

⇒ e
1
n
x = (ex)

1
n .

For r rational, let r = m
n , m, n ∈ N and n 6= 0. Then

erx = e
m
n
x =

(
e

1
n
x
)m

=
(
(ex)

1
n

)m
= (ex)

m
n = (ex)r .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 4 January 24, 2008 4 / 17



Definition and Properties Differentiation Integration Arbitrary PowersDefinition Properties Another Definition

Derivatives

Lemma

d

dx
ex = ex ⇒

∫
ex dx = ex + C.

dm

dxm
ex = ex > 0 ⇒ E (x) = ex is concave up, increasing,

and positive.

Proof

Since E (x) = ex is the inverse of L(x) = ln x , then with y = ex ,

d

dx
ex = E ′(x) =

1

L′(y)
=

1

(ln y)′
=

1
1
y

= y = ex .
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Derivatives

Lemma

d

dx
ex = ex ⇒

∫
ex dx = ex + C.

dm

dxm
ex = ex > 0 ⇒ E (x) = ex is concave up, increasing,

and positive.

Proof

First, for m = 1, it is true. Next, assume that it is true for k, then

dk+1

dxk+1
ex =

d

dx

(
dk

dxk
ex

)
=

d

dx
(ex) = ex .

By the axiom of induction, it is true for all positive integer m.
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ex : as the series
∑∞

k=0
xk

k!

Definition

(Section 11.5)

ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

= lim
n→∞

(
n∑

k=0

xk

k!

)
, ∀x ∈ R.

(k! = 1 · 2 · · · k)

Number e

e =
∞∑

k=0

1

k!
= 1 +

1

1
+

1

1 · 2
+

1

1 · 2 · 3
+ · · · = lim

n→∞

(
n∑

k=0

1

k!

)
.

e ≈ 2.71828182845904523536 . . .
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Limit: limx→∞
ex

xn

Theorem

lim
x→∞

ex

xn
= ∞, ∀n ∈ N.

Proof.

Recall that

ex =
∞∑

k=0

xk

k!
= 1 +

x

1
+

x2

1 · 2
+

x3

1 · 2 · 3
+ · · · .

For large x > 0,

ex >
xp

p!
⇒ ex

xn
>

xp−n

p!
.

For p > n, lim
x→∞

xp−n = ∞, then lim
x→∞

ex

xn
= ∞.
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Quiz

Quiz

1. domain of ln
(
1 + x2

)
: (a) x > 1, (b) x > −1, (c) any x .

2. domain of ln
(
x
√

4 + x2
)

: (a) x 6= 0, (b) x > 0, (c) any x .
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Definition and Properties Differentiation Integration Arbitrary PowersChain Rule Graphing

Differentiation: Chain Rule

Lemma

d

dx
eu = eu du

dx
.

Proof

By the chain rule,

d

dx
eu =

d

du
(eu)

du

dx
= eu du

dx

Examples

d

dx
ekx = ekx · k = kekx .

d

dx
e
√

x = e
√

x · d

dx

√
x = e

√
x · 1

2
√

x
y =

e
√

x

2
√

x

d

dx
e−x2

= e−x2 d

dx

(
−x2

)
= e−x2

(−2x) = −2xe−x2
.
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Examples: Chain Rule

Examples

d

dx
e4 ln x .

d

dx
esin 2x .

d

dx
ln
(
cos e2x

)
.

Solution

Simplify it before the differentiation:

e4 ln x =
(
e ln x

)4
= x4 ⇒ d

dx
e4 ln x =

d

dx
x4 = 4x3.
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Graph of f (x) = e−
x2

2

Example

Let f (x) = e−
x2

2 .
Determine the symmetry of graph and
asymptotes.

Solution

Since f (−x) = e−
(−x)2

2 = e−
x2

2 = f (x) and

lim
x→±∞

e−
(−x)2

2 = 0, the graph is symmetry w.r.t.

the y -axis, and the x-axis is a horizontal
asymptote.
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Graph of f (x) = e−
x2

2

Example

Let f (x) = e−
x2

2 .
On what intervals does f increase? Decrease?
Find the extrem values of f .

Solution

We have

f ′(x) = e−
x2

2 (−x) = −xe−
x2

2 .

Thus f ↑ on (−∞, 0) and ↓ on (0,∞).

At x = 0, f ′(x) = 0. Thus
f (0) = e0 = 1

is the (only) local and absolute maximum.
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Graph of f (x) = e−
x2

2

Example

Let f (x) = e−
x2

2 .
Determine the concavity and inflection points.

Solution

From f ′(x) = −xe−
x2

2 , we have

f ′′(x) = −e−
x2

2 + x2e−
x2

2 = (x2 − 1)e−
x2

2 .

At x = ±1, f ′′(x) = 0. Then, the graph is
concave up on (−∞,−1) and (1,∞); the
graph is concave down on (−1, 1).

The points

(±1, f (±1)) = (±1, e−
1
2 )

are points of inflection.
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Quiz (cont.)

Quiz (cont.)

3.
d

dx
(ln |x |) =? : (a)

1

x
, (b)

1

|x |
, (c) −1

x
.

4.

∫
x−1 dx =? : (a) ln x + C , (b) ln |x |+ C , (c) x−1 + C .
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Definition and Properties Differentiation Integration Arbitrary Powersu-Substitution

Integration: u-Substitution

Theorem ∫
eg(x)g ′(x) dx = eg(x) + C .

Proof.

Let u = g(x), thus du = g ′(x)dx , then∫
eg(x)g ′(x) dx =

∫
eudu = eu + C = eg(x) + C .

Example

Calculate

∫
xe−

x2

2 dx .

Let u = − x2

2 , thus du = −xdx , then∫
xe−

x2

2 dx = −
∫

eudu = −eu + C = −e−
x2

2 + C .
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Definition and Properties Differentiation Integration Arbitrary PowersArbitrary Powers Other Bases

Arbitrary Powers: f (x) = x r

Definition

For z irrational, we define xz = ez ln x , x > 0.

Properties (r and s real numbers)

For x > 0, x r = er ln x .

x r+s = x r · x s , x r−s =
x r

x s
, x rs = (x r )s

d

dx
x r = rx r−1, ⇒

∫
x r dx =

x r+1

r + 1
+ C , for r 6= −1.

Example

d

dx

(
x2 + 1

)3x
=

d

dx
e3x ln(x2+1) = e3x ln(x2+1) d

dx

(
3x ln(x2 + 1)

)
= e3x ln(x2+1)

(
6x2

x2 + 1
+ 3 ln(x2 + 1)

)
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Definition and Properties Differentiation Integration Arbitrary PowersArbitrary Powers Other Bases

Other Bases: f (x) = px , p > 0

Definition

For p > 0, the function

f (x) = px = ex ln p

is called the exp function with base p.

Properties

d

dx
px = px ln p ⇒

∫
px dx =

1

ln p
px + C , for p > 0, p 6= 1
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Other Bases: f (x) = logp x , p > 0

Definition

For p > 0, the function

f (x) = logp x =
ln x

ln p

is called the log function with base p.

Properties

d

dx
logp x =

1

x ln p
.
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