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Integration by Parts: Undoing the Product Rule

Product Rule

The product rule:
d

dx

(
uv

)
= u

d

dx
v + v

d

dx
u

In terms of differentials:
d
(
uv

)
= u dv + v du

Rearrange:
u dv = d

(
uv

)
− v du

Integrate:∫
u dv = uv −

∫
v du

Integration by Parts∫
u dv = uv −

∫
v du

Reduction: poly. xk can be
reduced by diff.

Cycling: sin x , cos x , ex , sinh x ,
cosh x , · · · , retain their form
after diff. or int.

Change of Form: ln x , sin−1 x ,
tan−1 x , · · · completely change
their form after diff.

Success depends on choosing u and dv so that∫
v du is easier that

∫
u dv
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Integration by Parts: Reduction

Integration by Parts ∫
u dv = uv −

∫
v du

Reduction use the fact that poly. xk can be reduced by diff.

Examples

∫
x cos x dx = x sin x −

∫
sin x dx

= x sin x + cos x + C

u = x , dv = cos x dx , thus du = dx , v = sin x∫
v du =

∫
sin x dx is easier than

∫
u dv =

∫
x cos x dx
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u dv = uv −

∫
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Reduction use the fact that poly. xk can be reduced by diff.

Examples

∫
xe−

x
2 dx = x

(
−2e−

x
2
)
−

∫ (
− 2e−

x
2
)
dx

= −2xe−
x
2 − 4e−

x
2 + C

u = x , dv = e−
x
2 dx , thus du = dx , v = −2e−

x
2∫

v du =

∫ (
− 2e−

x
2
)
dx is easier than

∫
u dv =

∫
xe−

x
2 dx
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∫
x5 cos x3 dx =

1

3
x3 sin x3 −

∫
x2 sin x3 dx

=
1

3
x3 sin x3 +

1

3
cos x3 + C

u = x3, dv = x2 cos x3 dx , thus du = 3x2dx , v = 1
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x2 sin x3 dx =
1

3

∫
sin u du = −1

3
cos u + C = −1
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cos x3 + C
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Reduction Formulas

∫
u dv = uv −

∫
v du

If F ′(x) = f (x), then∫
xnf (x) dx = xnF (x) − n

∫
xn−1F (x)dx

(Set u = xn, dv = f (x) dx , du = nxn−1 dx , v = F (x))

With f (x) = eax and F (x) = 1
aeax ,∫

xneax dx =
1

a
xneax − n

a

∫
xn−1eaxdx

With f (x) = cos(kx) and F (x) = 1
k sin(kx),∫

xn cos(kx) dx =
1

k
xn sin(kx) − n

k

∫
xn−1 sin(kx)dx

With f (x) = sin(kx) and F (x) = − 1
k cos(kx),∫

xn sin(kx) dx = −1

k
xn cos(kx) +

n

k

∫
xn−1 cos(kx)dx
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∫
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∫
x3e2x dx =
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2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
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2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx
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=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Reduction Formulas

∫
xneax dx =

1

a
xneax − n

a

∫
xn−1eaxdx .

Examples

∫
x3e2x dx =

1

2
x3e2x − 3

2

∫
x2e2xdx

=
1

2
x3e2x − 3

2

(
1

2
x2e2x −

∫
xe2xdx

)
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

2

∫
e2xdx

))
=

1

2
x3e2x − 3

2

(
1

2
x2e2x −

(
1

2
xe2x − 1

4
e2x

))
+ C

=
1

8
e2x

(
4x3 − 6x2 + 6x − 3

)
+ C

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 7 February 5, 2008 5 / 9



Integration by Parts Parts on Definite Integrals Undoing the Product Rule Reduction Cycling Change of Form

Integration by Parts: Cycling

Integration by Parts ∫
u dv = uv −

∫
v du

Cycling use the fact that functions such as sin x , cos x , ex , sinh x ,
cosh x , · · · , retain their form after differentiation or integration.

Example∫
ex cos x dx = ex sin x −

∫
ex sin x dx

= ex sin x + ex cos x −
∫

ex cos x dx

u = ex , dv = cos x dx , thus du = exdx , v = sin x∫
ex sin x dx

u = ex , dv = sin x dx , thus du = exdx , v = − cos x
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2

∫
ex cos x dx = ex

(
sin x + cos x

)
+ C∫

ex cos x dx =
1

2
ex

(
sin x + cos x

)
+ C
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Integration by Parts: Change of Form

Integration by Parts ∫
u dv = uv −

∫
v du

Change of form use the fact that functions ln x , sin−1 x , tan−1 x ,
· · · completely change their form after differentiation.

Examples

∫
ln x dx = x ln x −

∫
xx−1 dx

= x ln x −
∫

dx = x ln x − x + C

u = ln x , dv = dx , thus du = x−1dx , v = x∫
v du =

∫
dx is easier than

∫
u dv =

∫
ln x dx
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∫
tan−1 x dx = x tan−1 x −

∫
x

1 + x2
dx

= x tan−1 x − 1

2
ln |1 + x2| + C

u = tan−1 x , dv = dx , thus du = 1
1+x2 dx , v = x

Set u = 1 + x2, du = 2x dx ,∫
x

1 + x2
dx =

1

2

∫
1

u
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1

2
ln |u| + C
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x3

1 + x2
dx
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∫ (
x − x

1 + x2

)
dx

=
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3
x3 tan−1 x − 1

6

(
x2 − ln |1 + x2|

)
+ C

u = tan−1 x , dv = x2 dx , thus du = 1
1+x2 dx , v = 1

3x3

Note that
x3

1 + x2
= x − x

1 + x2
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u dv = uv −
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Change of form use the fact that functions ln x , sin−1 x , tan−1 x ,
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Examples

∫
cos−1 x dx = x cos−1 x +

∫
x√

1 − x2
dx

= x cos−1 x −
√

1 − x2 + C

u = cos−1 x , dv = dx , thus du = − 1√
1−x2

dx , v = x

Set u = 1 − x2, du = −2x dx ,∫
x√

1 − x2
dx = −1

2

∫
1√
u

du = −
√

u + C
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Parts on Definite Integrals

Parts on Definite Integrals∫ b

a
u dv = (uv)|ba −

∫ b

a
v du

Example

∫ 2

0
x3

√
4 − x2 dx = −1

3
x2(4 − x2)

3
2

∣∣∣∣2
0

− 1

3

∫ 2

0
(4 − x2)

3
2 (−2x) dx

= −1

3
·
(
−64

5

)
=

64

15

u = x2, dv = x
√

4 − x2 dx , thus du = 2x dx , v = −1
3(4 − x2)

3
2

Set u = 4 − x2, du = −2x dx ,∫ 2

0
(4 − x2)

3
2 (−2x) dx =

∫ 0

4
u

3
2 du = − 2

5
u

5
2

∣∣∣∣4
0

= −64

5
.
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