Lecture 7
 Section 8.2 Integration by Parts

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

$$
d(u v)=u d v+v d u, \quad \int u d v=u v-\int v d u
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials

```
d(uv) =udv +vdu
```

Rearrange:

$$
u d v=d(u v)-v d u
$$

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:
$u d v=d(u v)-v d u$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:
$u d v=d(u v)-v d u$
- Integrate:

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

reduced by diff.

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:

$$
u d v=d(u v)-v d u
$$

- Integrate:

$$
\int u d v=u v-\int v d u
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

reduced by diff.
\square
$\cosh x, \cdots$, retain their form
after diff or int

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:

$$
u d v=d(u v)-v d u
$$

- Integrate:

$$
\int u d v=u v-\int v d u
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

- Reduction: poly. x^{k} can be reduced by diff.
- Cycling: $\sin x, \cos x, e^{x}, \sinh x$ $\cosh x, \cdots$, retain their form after diff or int
\qquad

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:

$$
u d v=d(u v)-v d u
$$

- Integrate:

$$
\int u d v=u v-\int v d u
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

- Reduction: poly. x^{k} can be reduced by diff.
- Cycling: $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after diff. or int.
- Change of Form: In $x, \sin ^{-1} x$,
$\tan ^{-1} x, \cdots$ completely change their form after diff.

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Undoing the Product Rule

Product Rule

- The product rule:

$$
\frac{d}{d x}(u v)=u \frac{d}{d x} v+v \frac{d}{d x} u
$$

- In terms of differentials:

$$
d(u v)=u d v+v d u
$$

- Rearrange:

$$
u d v=d(u v)-v d u
$$

- Integrate:

$$
\int u d v=u v-\int v d u
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

- Reduction: poly. x^{k} can be reduced by diff.
- Cycling: $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after diff. or int.
- Change of Form: $\ln x, \sin ^{-1} x$, $\tan ^{-1} x, \cdots$ completely change their form after diff.

Success depends on choosing u and $d v$ so that

$$
\int v d u \text { is easier that } \int u d v
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$x \cos x d x$
thus $d u=d x, v=\sin x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x \cos x d x
$$

$u=x, d v=\cos x d x$, thus $d u=d x, v=\sin x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.
Examples

$$
\int x \cos x d x=x \sin x-\int \sin x d x
$$

$u=x, d v=\cos x d x$, thus $d u=d x, v=\sin x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x \cos x d x=x \sin x-\int \sin x d x
$$

$u=x, d v=\cos x d x$, thus $d u=d x, v=\sin x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x \cos x d x=x \sin x-\int \sin x d x
$$

$u=x, d v=\cos x d x$, thus $d u=d x, v=\sin x$

$$
\int v d u=\int \sin x d x \text { is easier than } \int u d v=\int x \cos x d x
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\begin{aligned}
\int x \cos x d x & =x \sin x-\int \sin x d x \\
& =x \sin x+\cos x+C
\end{aligned}
$$

$u=x, d v=\cos x d x$, thus $d u=d x, v=\sin x$
$\int v d u=\int \sin x d x$ is easier than $\int u d v=\int x \cos x d x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x e^{-\frac{x}{2}} d x=
$$

$u=x, d v=e^{-\frac{x}{2}} d x$, thus $d u=d x, v=-2 e^{-\frac{x}{2}}$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x e^{-\frac{x}{2}} d x=x\left(-2 e^{-\frac{x}{2}}\right)-\int\left(-2 e^{-\frac{x}{2}}\right) d x
$$

$u=x, d v=e^{-\frac{x}{2}} d x$, thus $d u=d x, v=-2 e^{-\frac{x}{2}}$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x e^{-\frac{x}{2}} d x=x\left(-2 e^{-\frac{x}{2}}\right)-\int\left(-2 e^{-\frac{x}{2}}\right) d x
$$

$u=x, d v=e^{-\frac{x}{2}} d x$, thus $d u=d x, v=-2 e^{-\frac{x}{2}}$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x e^{-\frac{x}{2}} d x=x\left(-2 e^{-\frac{x}{2}}\right)-\int\left(-2 e^{-\frac{x}{2}}\right) d x
$$

$u=x, d v=e^{-\frac{x}{2}} d x$, thus $d u=d x, v=-2 e^{-\frac{x}{2}}$
$\int v d u=\int\left(-2 e^{-\frac{x}{2}}\right) d x$ is easier than $\int u d v=\int x e^{-\frac{x}{2}} d x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\begin{aligned}
\int x e^{-\frac{x}{2}} d x & =x\left(-2 e^{-\frac{x}{2}}\right)-\int\left(-2 e^{-\frac{x}{2}}\right) d x \\
& =-2 x e^{-\frac{x}{2}}-4 e^{-\frac{x}{2}}+C
\end{aligned}
$$

$u=x, d v=e^{-\frac{x}{2}} d x$, thus $d u=d x, v=-2 e^{-\frac{x}{2}}$
$\int v d u=\int\left(-2 e^{-\frac{x}{2}}\right) d x$ is easier than $\int u d v=\int x e^{-\frac{x}{2}} d x$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{2} \sin x d x
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int(-\cos x) 2 x d x
$$

$u=x^{2}, d v=\sin x d x$, thus $d u=2 x d x, v=-\cos x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int(-\cos x) 2 x d x
$$

$u=x^{2}, d v=\sin x d x$, thus $d u=2 x d x, v=-\cos x$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int(-\cos x) 2 x d x
$$

$u=x^{2}, d v=\sin x d x$, thus $d u=2 x d x, v=-\cos x$

$$
\int v d u=\int(-\cos x) 2 x d x \text { is easier than } \int u d v=\int x^{2} \sin x d x
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\begin{gathered}
\int x^{2} \sin x d x=x^{2}(-\cos x)-\int(-\cos x) 2 x d x \\
=-x^{2} \cos x+2 \int x \cos x d x \\
=-x^{2} \cos x+2(x \sin x+\cos x)+C \\
u=x^{2}, d v=\sin x d x, \text { thus } d u=2 x d x, v=-\cos x \\
\int v d u=\int(-\cos x) 2 x d x \text { is easier than } \int u d v=\int x^{2} \sin x d x
\end{gathered}
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\begin{aligned}
\int x^{2} \sin x d x & =x^{2}(-\cos x)-\int(-\cos x) 2 x d x \\
& =-x^{2} \cos x+2 \int x \cos x d x \\
& =-x^{2} \cos x+2(x \sin x+\cos x)+C
\end{aligned}
$$

$u=x^{2}, d v=\sin x d x$, thus $d u=2 x d x, v=-\cos x$

$$
\int v d u=\int(-\cos x) 2 x d x \text { is easier than } \int u d v=\int x^{2} \sin x d x
$$

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{5} \cos x^{3} d x
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{5} \cos x^{3} d x=\frac{1}{3} x^{3} \sin x^{3}-\int x^{2} \sin x^{3} d x
$$

$u=x^{3}, d v=x^{2} \cos x^{3} d x$, thus $d u=3 x^{2} d x, v=\frac{1}{3} \sin x^{3}$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{5} \cos x^{3} d x=\frac{1}{3} x^{3} \sin x^{3}-\int x^{2} \sin x^{3} d x
$$

$u=x^{3}, d v=x^{2} \cos x^{3} d x$, thus $d u=3 x^{2} d x, v=\frac{1}{3} \sin x^{3}$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\int x^{5} \cos x^{3} d x=\frac{1}{3} x^{3} \sin x^{3}-\int x^{2} \sin x^{3} d x
$$

$$
u=x^{3}, d v=x^{2} \cos x^{3} d x, \text { thus } d u=3 x^{2} d x, v=\frac{1}{3} \sin x^{3}
$$

$$
\int x^{2} \sin x^{3} d x=\frac{1}{3} \int \sin u d u=-\frac{1}{3} \cos u+C=-\frac{1}{3} \cos x^{3}+C
$$

Integration by Parts: Reduction

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Reduction use the fact that poly. x^{k} can be reduced by diff.

Examples

$$
\begin{aligned}
\int x^{5} \cos x^{3} d x & =\frac{1}{3} x^{3} \sin x^{3}-\int x^{2} \sin x^{3} d x \\
& =\frac{1}{3} x^{3} \sin x^{3}+\frac{1}{3} \cos x^{3}+C
\end{aligned}
$$

$u=x^{3}, d v=x^{2} \cos x^{3} d x$, thus $d u=3 x^{2} d x, v=\frac{1}{3} \sin x^{3}$

$$
\int x^{2} \sin x^{3} d x=\frac{1}{3} \int \sin u d u=-\frac{1}{3} \cos u+C=-\frac{1}{3} \cos x^{3}+C
$$

Reduction Formulas

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $\left.u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)\right)$

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

- With $f(x)=\cos (k x)$ and $F(x)=\frac{1}{k} \sin (k x)$,

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

- With $f(x)=\cos (k x)$ and $F(x)=\frac{1}{k} \sin (k x)$,

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

- With $f(x)=\cos (k x)$ and $F(x)=\frac{1}{k} \sin (k x)$,

$$
\int x^{n} \cos (k x) d x=\frac{1}{k} x^{n} \sin (k x)-\frac{n}{k} \int x^{n-1} \sin (k x) d x
$$

- With $f(x)=\sin (k x)$ and $F(x)=-\frac{1}{k} \cos (k x)$,

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

- With $f(x)=\cos (k x)$ and $F(x)=\frac{1}{k} \sin (k x)$,

$$
\int x^{n} \cos (k x) d x=\frac{1}{k} x^{n} \sin (k x)-\frac{n}{k} \int x^{n-1} \sin (k x) d x
$$

- With $f(x)=\sin (k x)$ and $F(x)=-\frac{1}{k} \cos (k x)$,

Reduction Formulas

$$
\int u d v=u v-\int v d u
$$

If $F^{\prime}(x)=f(x)$, then

$$
\int x^{n} f(x) d x=x^{n} F(x)-n \int x^{n-1} F(x) d x
$$

(Set $u=x^{n}, d v=f(x) d x, d u=n x^{n-1} d x, v=F(x)$)

- With $f(x)=e^{a x}$ and $F(x)=\frac{1}{a} e^{a x}$,

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

- With $f(x)=\cos (k x)$ and $F(x)=\frac{1}{k} \sin (k x)$,

$$
\int x^{n} \cos (k x) d x=\frac{1}{k} x^{n} \sin (k x)-\frac{n}{k} \int x^{n-1} \sin (k x) d x
$$

- With $f(x)=\sin (k x)$ and $F(x)=-\frac{1}{k} \cos (k x)$,

$$
\int x^{n} \sin (k x) d x=-\frac{1}{k} x^{n} \cos (k x)+\frac{n}{k} \int x^{n-1} \cos (k x) d x
$$

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

Examples

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

Examples

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x
$$

Examples

$$
\int x^{3} e^{2 x} d x=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x
$$

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x .
$$

Examples

$$
\int x^{3} e^{2 x} d x=\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x
$$

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x .
$$

Examples

$$
\begin{aligned}
\int x^{3} e^{2 x} d x & =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right)\right)
\end{aligned}
$$

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x .
$$

Examples

$$
\begin{aligned}
\int x^{3} e^{2 x} d x & =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right)\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right)\right)+C
\end{aligned}
$$

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x .
$$

Examples

$$
\begin{aligned}
\int x^{3} e^{2 x} d x & =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right)\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right)\right)+C \\
& =\frac{1}{8} e^{2 x}\left(4 x^{3}-6 x^{2}+6 x-3\right)+C
\end{aligned}
$$

Reduction Formulas

$$
\int x^{n} e^{a x} d x=\frac{1}{a} x^{n} e^{a x}-\frac{n}{a} \int x^{n-1} e^{a x} d x .
$$

Examples

$$
\begin{aligned}
\int x^{3} e^{2 x} d x & =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2} \int x^{2} e^{2 x} d x \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\int x e^{2 x} d x\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{2} \int e^{2 x} d x\right)\right) \\
& =\frac{1}{2} x^{3} e^{2 x}-\frac{3}{2}\left(\frac{1}{2} x^{2} e^{2 x}-\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right)\right)+C \\
& =\frac{1}{8} e^{2 x}\left(4 x^{3}-6 x^{2}+6 x-3\right)+C
\end{aligned}
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

\qquad

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x
$$

$u=e^{x}, d v=\cos x d x$, thus $d u=e^{x} d x, v=\sin x$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

$$
u=e^{x}, d v=\cos x d x \text {, thus } d u=e^{x} d x, v=\sin x
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

$$
u=e^{x}, d v=\cos x d x \text {, thus } d u=e^{x} d x, v=\sin x
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

$$
\begin{aligned}
& u=e^{x}, d v=\cos x d x \text {, thus } d u=e^{x} d x, v=\sin x \\
& \int e^{x} \sin x d x \text { is of the same form as } \int e^{x} \cos x d x
\end{aligned}
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

$$
\begin{aligned}
& u=e^{x}, d v=\cos x d x, \text { thus } d u=e^{x} d x, v=\sin x \\
& \int e^{x} \sin x d x \\
& u=e^{x}, d v=\sin x d x, \text { thus } d u=e^{x} d x, v=-\cos x
\end{aligned}
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\int e^{x} \cos x d x=e^{x} \sin x-\int e^{x} \sin x d x
$$

$$
u=e^{x}, d v=\cos x d x, \text { thus } d u=e^{x} d x, v=\sin x
$$

$$
\begin{aligned}
& \int e^{x} \sin x d x=e^{x}(-\cos x)-\int e^{x}(-\cos x) d x \\
& u=e^{x}, d v=\sin x d x, \text { thus } d u=e^{x} d x, v=-\cos x
\end{aligned}
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\begin{aligned}
\int e^{x} \cos x d x & =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

$$
u=e^{x}, d v=\cos x d x, \text { thus } d u=e^{x} d x, v=\sin x
$$

$$
\int e^{x} \sin x d x=e^{x}(-\cos x)-\int e^{x}(-\cos x) d x
$$

$$
u=e^{x}, d v=\sin x d x, \text { thus } d u=e^{x} d x, v=-\cos x
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\begin{aligned}
\int e^{x} \cos x d x & =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

$\int e^{x} \sin x d x$ is cycling after two integrations by parts.

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\begin{aligned}
\int e^{x} \cos x d x & =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

"Solve" the equation for $\int e^{x} \cos x d x$:

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\begin{aligned}
\int e^{x} \cos x d x & =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

"Solve" the equation for $\int e^{x} \cos x d x$:

$$
\begin{aligned}
& 2 \int e^{x} \cos x d x=e^{x}(\sin x+\cos x)+C \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x)+C
\end{aligned}
$$

Integration by Parts: Cycling

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Cycling use the fact that functions such as $\sin x, \cos x, e^{x}, \sinh x$, $\cosh x, \cdots$, retain their form after differentiation or integration.

Example

$$
\begin{aligned}
\int e^{x} \cos x d x & =e^{x} \sin x-\int e^{x} \sin x d x \\
& =e^{x} \sin x+e^{x} \cos x-\int e^{x} \cos x d x
\end{aligned}
$$

"Solve" the equation for $\int e^{x} \cos x d x$:

$$
\begin{aligned}
& 2 \int e^{x} \cos x d x=e^{x}(\sin x+\cos x)+C \\
& \int e^{x} \cos x d x=\frac{1}{2} e^{x}(\sin x+\cos x)+C
\end{aligned}
$$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.

Examples

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.

Examples

$$
\int \ln x d x
$$

$u=\ln x, d v=d x$, thus $d u=x^{-1} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \ln x d x=x \ln x-\int x x^{-1} d x
$$

$u=\ln x, d v=d x$, thus $d u=x^{-1} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.

Examples

$$
\int \ln x d x=x \ln x-\int x x^{-1} d x
$$

$u=\ln x, d v=d x$, thus $d u=x^{-1} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \ln x d x=x \ln x-\int x x^{-1} d x
$$

$u=\ln x, d v=d x$, thus $d u=x^{-1} d x, v=x$
$\int v d u=\int d x$ is easier than $\int u d v=\int \ln x d x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\begin{aligned}
\int \ln x d x & =x \ln x-\int x x^{-1} d x \\
& =x \ln x-\int d x=x \ln x-x+C
\end{aligned}
$$

$u=\ln x, d v=d x$, thus $d u=x^{-1} d x, v=x$
$\int v d u=\int d x$ is easier than $\int u d v=\int \ln x d x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.
Examples

$$
\int \tan ^{-1} x d x
$$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.
Examples

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.
Examples

$$
\int \tan ^{-1} x d x=x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=x$
Set $u=1+x^{2}, d u=2 x d x$,
$\int \frac{x}{1+x^{2}} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.
Examples

$$
\begin{aligned}
\int \tan ^{-1} x d x & =x \tan ^{-1} x-\int \frac{x}{1+x^{2}} d x \\
& =x \tan ^{-1} x-\frac{1}{2} \ln \left|1+x^{2}\right|+C
\end{aligned}
$$

$u=\tan ^{-1} x, d v=d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=x$
Set $u=1+x^{2}, d u=2 x d x$,
$\int \frac{x}{1+x^{2}} d x=\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.
Examples

$$
\int x^{2} \tan ^{-1} x d x
$$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.
Examples

$$
\int x^{2} \tan ^{-1} x d x=\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=x^{2} d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=\frac{1}{3} x^{3}$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.
Examples

$$
\int x^{2} \tan ^{-1} x d x=\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=x^{2} d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=\frac{1}{3} x^{3}$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
... completely change their form after differentiation.
Examples

$$
\int x^{2} \tan ^{-1} x d x=\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
$$

$u=\tan ^{-1} x, d v=x^{2} d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=\frac{1}{3} x^{3}$
Note that $\frac{x^{3}}{1+x^{2}}=x-\frac{x}{1+x^{2}}$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.
Examples

$$
\begin{aligned}
\int x^{2} \tan ^{-1} x d x & =\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x \\
& =\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int\left(x-\frac{x}{1+x^{2}}\right) d x
\end{aligned}
$$

$u=\tan ^{-1} x, d v=x^{2} d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=\frac{1}{3} x^{3}$
Note that $\frac{x^{3}}{1+x^{2}}=x-\frac{x}{1+x^{2}}$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.
Examples

$$
\begin{aligned}
\int x^{2} \tan ^{-1} x d x & =\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x \\
& =\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{3} \int\left(x-\frac{x}{1+x^{2}}\right) d x \\
& =\frac{1}{3} x^{3} \tan ^{-1} x-\frac{1}{6}\left(x^{2}-\ln \left|1+x^{2}\right|\right)+C
\end{aligned}
$$

$u=\tan ^{-1} x, d v=x^{2} d x$, thus $d u=\frac{1}{1+x^{2}} d x, v=\frac{1}{3} x^{3}$
Note that $\frac{x^{3}}{1+x^{2}}=x-\frac{x}{1+x^{2}}$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \cos ^{-1} x d x
$$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \cos ^{-1} x d x=x \cos ^{-1} x+\int
$$

$u=\cos ^{-1} x, d v=d x$, thus $d u=-\frac{1}{\sqrt{1-x^{2}}} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \cos ^{-1} x d x=x \cos ^{-1} x+\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

$u=\cos ^{-1} x, d v=d x$, thus $d u=-\frac{1}{\sqrt{1-x^{2}}} d x, v=x$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\int \cos ^{-1} x d x=x \cos ^{-1} x+\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

$$
\begin{aligned}
& =x \cos ^{-1} x-\sqrt{1-x^{2}} \\
& \text { us } d u=-\frac{1}{\sqrt{1-x^{2}}} d x, v=x
\end{aligned}
$$

$u=\cos ^{-1} x, d v=d x$, thus $d u=-\frac{1}{\sqrt{1-x^{2}}} d x, v=x$
Set $u=1-x^{2}, d u=-2 x d x$,
$\int \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int \frac{1}{\sqrt{u}} d u=-\sqrt{u}+C$

Integration by Parts: Change of Form

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Change of form use the fact that functions $\ln x, \sin ^{-1} x, \tan ^{-1} x$,
\cdots completely change their form after differentiation.

Examples

$$
\begin{aligned}
\int \cos ^{-1} x d x & =x \cos ^{-1} x+\int \frac{x}{\sqrt{1-x^{2}}} d x \\
& =x \cos ^{-1} x-\sqrt{1-x^{2}}+C
\end{aligned}
$$

$u=\cos ^{-1} x, d v=d x$, thus $d u=-\frac{1}{\sqrt{1-x^{2}}} d x, v=x$
Set $u=1-x^{2}, d u=-2 x d x$,
$\int \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int \frac{1}{\sqrt{u}} d u=-\sqrt{u}+C$

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

$$
\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x
$$

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

$\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x=-\left.\frac{1}{3} x^{2}\left(4-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{2}-\frac{1}{3} \int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x$
$u=x^{2}, d v=x \sqrt{4-x^{2}} d x$, thus $d u=2 x d x, v=-\frac{1}{3}\left(4-x^{2}\right)^{\frac{3}{2}}$

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

$$
\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x=-\left.\frac{1}{3} x^{2}\left(4-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{2}-\frac{1}{3} \int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x
$$

$$
u=x^{2}, d v=x \sqrt{4-x^{2}} d x, \text { thus } d u=2 x d x, v=-\frac{1}{3}\left(4-x^{2}\right)^{\frac{3}{2}}
$$

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

$$
\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x=-\left.\frac{1}{3} x^{2}\left(4-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{2}-\frac{1}{3} \int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x
$$

$u=x^{2}, d v=x \sqrt{4-x^{2}} d x$, thus $d u=2 x d x, v=-\frac{1}{3}\left(4-x^{2}\right)^{\frac{3}{2}}$
Set $u=4-x^{2}, d u=-2 x d x$,
$\int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x=\int_{4}^{0} u^{\frac{3}{2}} d u=-\left.\frac{2}{5} u^{\frac{5}{2}}\right|_{0} ^{4}=-\frac{64}{5}$.

Parts on Definite Integrals

Parts on Definite Integrals

$$
\int_{a}^{b} u d v=\left.(u v)\right|_{a} ^{b}-\int_{a}^{b} v d u
$$

Example

$$
\begin{aligned}
& \begin{aligned}
\int_{0}^{2} x^{3} \sqrt{4-x^{2}} d x & =-\left.\frac{1}{3} x^{2}\left(4-x^{2}\right)^{\frac{3}{2}}\right|_{0} ^{2}-\frac{1}{3} \int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x \\
& =-\frac{1}{3} \cdot\left(-\frac{64}{5}\right)=\frac{64}{15}
\end{aligned} \\
& u=x^{2}, d v=x \sqrt{4-x^{2}} d x, \text { thus } d u=2 x d x, v=-\frac{1}{3}\left(4-x^{2}\right)^{\frac{3}{2}}
\end{aligned}
$$

Set $u=4-x^{2}, d u=-2 x d x$,
$\int_{0}^{2}\left(4-x^{2}\right)^{\frac{3}{2}}(-2 x) d x=\int_{4}^{0} u^{\frac{3}{2}} d u=-\left.\frac{2}{5} u^{\frac{5}{2}}\right|_{0} ^{4}=-\frac{64}{5}$.

Outline

- Integration by Parts
- Undoing the Product Rule
- Reduction
- Cycling
- Change of Form
- Parts on Definite Integrals

