Lecture 7 Section 8.2 Integration by Parts

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432

$$d(uv) = u dv + v du, \qquad \int u dv = uv - \int v du$$

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: u dv = d(uv) - v du

• Integrate:
$$\int u \, dv = uv - \int v$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ···, retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Success depends on choosing u and dv so that $\int v \, du$ is easier that $\int u \, dv$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$ • In terms of differentials: d(uv) = u dv + v du
- Rearrange: u dv = d(uv) - v du

• Integrate:
$$\int u \, dv = uv - \int v \, du$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ···, retain their form after diff. or int.
- Change of Form: In x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: u dv = d(uv) - v du

• Integrate:
$$\int u \, dv = uv - \int v \, du$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ···, retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: $u \, dv = d(uv) - v \, du$
- Integrate: $\int u \, dv = uv - \int v \, du$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ..., retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: $u \, dv = d(uv) - v \, du$
- Integrate: $\int u \, dv = uv - \int v \, du$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ..., retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: $u \, dv = d(uv) - v \, du$
- Integrate: $\int u \, dv = uv - \int v \, du$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ..., retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Product Rule

- The product rule: $\frac{d}{dx}(uv) = u\frac{d}{dx}v + v\frac{d}{dx}u$
- In terms of differentials: d(uv) = u dv + v du
- Rearrange: $u \, dv = d(uv) - v \, du$
- Integrate: $\int u \, dv = uv - \int v \, du$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

- Reduction: poly. x^k can be reduced by diff.
- Cycling: sin x, cos x, e^x, sinh x, cosh x, ..., retain their form after diff. or int.
- Change of Form: ln x, sin⁻¹ x, tan⁻¹ x, ··· completely change their form after diff.

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

 $\int v \, du = \int \sin x \, dx$ is easier than $\int u \, dv = \int x \cos x \, dx$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

 $\int v \, du = \int \sin x \, dx$ is easier than $\int u \, dv = \int x \cos x \, dx$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

$$\int v \, du = \int \sin x \, dx \quad \text{is easier than} \quad \int u \, dv = \int x \cos x \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

$$\int v \, du = \int \sin x \, dx \quad \text{is easier than} \quad \int u \, dv = \int x \cos x \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x \cos x \, dx = x \sin x - \int \sin x \, dx$$
$$= x \sin x + \cos x + C$$

u = x, $dv = \cos x \, dx$, thus du = dx, $v = \sin x$

$$\int v \, du = \int \sin x \, dx \quad \text{is easier than} \quad \int u \, dv = \int x \cos x \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x e^{-\frac{x}{2}} dx = x \left(-2e^{-\frac{x}{2}}\right) - \int \left(-2e^{-\frac{x}{2}}\right) dx$$
$$= -2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + C$$

$$u = x$$
, $dv = e^{-\frac{x}{2}} dx$, thus $du = dx$, $v = -2e^{-\frac{x}{2}}$

$$\int v \, du = \int \left(-2e^{-\frac{x}{2}} \right) dx$$
 is easier than $\int u \, dv = \int xe^{-\frac{x}{2}} dx$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int xe^{-\frac{x}{2}} dx = x\left(-2e^{-\frac{x}{2}}\right) - \int \left(-2e^{-\frac{x}{2}}\right) dx$$
$$= -2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + C$$

u = x, $dv = e^{-\frac{x}{2}} dx$, thus du = dx, $v = -2e^{-\frac{x}{2}}$

$$\int v \, du = \int \left(-2e^{-\frac{x}{2}} \right) dx$$
 is easier than $\int u \, dv = \int xe^{-\frac{x}{2}}$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int xe^{-\frac{x}{2}} dx = x\left(-2e^{-\frac{x}{2}}\right) - \int \left(-2e^{-\frac{x}{2}}\right) dx$$
$$= -2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + C$$

u = x, $dv = e^{-\frac{x}{2}} dx$, thus du = dx, $v = -2e^{-\frac{x}{2}}$

$$\int v \, du = \int \left(-2e^{-\frac{x}{2}} \right) dx \text{ is easier than } \int u \, dv = \int xe^{-\frac{x}{2}} dx$$

埘

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int xe^{-\frac{x}{2}} dx = x\left(-2e^{-\frac{x}{2}}\right) - \int \left(-2e^{-\frac{x}{2}}\right) dx$$
$$= -2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + C$$

u = x, $dv = e^{-\frac{x}{2}} dx$, thus du = dx, $v = -2e^{-\frac{x}{2}}$

$$\int v \, du = \int \left(-2e^{-\frac{x}{2}} \right) dx \text{ is easier than } \int u \, dv = \int xe^{-\frac{x}{2}} \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int xe^{-\frac{x}{2}} dx = x(-2e^{-\frac{x}{2}}) - \int (-2e^{-\frac{x}{2}}) dx$$
$$= -2xe^{-\frac{x}{2}} - 4e^{-\frac{x}{2}} + C$$

u = x, $dv = e^{-\frac{x}{2}} dx$, thus du = dx, $v = -2e^{-\frac{x}{2}}$

$$\int v \, du = \int \left(-2e^{-\frac{x}{2}} \right) dx \text{ is easier than } \int u \, dv = \int xe^{-\frac{x}{2}} \, dx$$

坍

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x) 2x \, dx$$

= -x² cos x + 2 $\int x \cos x \, dx$
= -x² cos x + 2 (x sin x + cos x) + C

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2x dx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Ħ

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

/ 9

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x) 2x \, dx$$
$$= -x^2 \cos x + 2 \int x \cos x \, dx$$

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2xdx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x) 2x \, dx$$

= $-x^2 \cos x + 2 \int x \cos x \, dx$
= $-x^2 \cos x + 2 (x \sin x + \cos x) + 4$

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2x dx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^{2} \sin x \, dx = x^{2} (-\cos x) - \int (-\cos x) 2x \, dx$$
$$= -x^{2} \cos x + 2 \int x \cos x \, dx$$
$$= -x^{2} \cos x + 2(x \sin x + \cos x) + 0$$

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2xdx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^2 \sin x \, dx = x^2 (-\cos x) - \int (-\cos x) 2x \, dx$$
$$= -x^2 \cos x + 2 \int x \cos x \, dx$$
$$= -x^2 \cos x + 2(x \sin x + \cos x) + 0$$

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2xdx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^{2} \sin x \, dx = x^{2} (-\cos x) - \int (-\cos x) 2x \, dx$$

= $-x^{2} \cos x + 2 \int x \cos x \, dx$
= $-x^{2} \cos x + 2(x \sin x + \cos x) + C$

 $u = x^2$, $dv = \sin x \, dx$, thus du = 2xdx, $v = -\cos x$

$$\int v \, du = \int (-\cos x) 2x \, dx \text{ is easier than } \int u \, dv = \int x^2 \sin x \, dx$$

Jiwen He, University of Houston

; / 9

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} x^3 \sin x^3 - \int x^2 \sin x^3 \, dx$$
$$= \frac{1}{3} x^3 \sin x^3 + \frac{1}{3} \cos x^3 + C$$

$$\int x^2 \sin x^3 \, dx = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos x^3 + C$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} x^3 \sin x^3 - \int x^2 \sin x^3 \, dx$$
$$= \frac{1}{3} x^3 \sin x^3 + \frac{1}{3} \cos x^3 + C$$

$$\int x^2 \sin x^3 \, dx = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos x^3 + C$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} x^3 \sin x^3 - \int x^2 \sin x^3 \, dx$$
$$= \frac{1}{3} x^3 \sin x^3 + \frac{1}{3} \cos x^3 + C$$

$$\int x^2 \sin x^3 \, dx = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos x^3 + C$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} x^3 \sin x^3 - \int x^2 \sin x^3 \, dx$$
$$= \frac{1}{3} x^3 \sin x^3 + \frac{1}{3} \cos x^3 + C$$

$$\int x^2 \sin x^3 \, dx = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos x^3 + C$$

Integration by Parts

$$\int u\,dv = uv - \int v\,du$$

Reduction use the fact that poly. x^k can be reduced by diff.

Examples

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} x^3 \sin x^3 - \int x^2 \sin x^3 \, dx$$
$$= \frac{1}{3} x^3 \sin x^3 + \frac{1}{3} \cos x^3 + C$$

$$\int x^2 \sin x^3 \, dx = \frac{1}{3} \int \sin u \, du = -\frac{1}{3} \cos u + C = -\frac{1}{3} \cos x^3 + C$$

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then
$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,
• With $f(x) = \cos(kx)$ and $F(x) = -\frac{1}{k}\sin(kx)$,
• With $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 7

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then

$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) \, dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,
• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then
$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,
$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,

Ħ

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then

$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,

$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,
(with $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

Jiwen He, University of Houston

February 5, 2008

畃

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then
$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,
$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} \, dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,
$$\int x^n \cos(kx) \, dx = \frac{1}{k}x^n \sin(kx) - \frac{n}{k}\int x^{n-1}\sin(kx) \, dx$$

• With $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

畃

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then
$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,
$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} \, dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,
$$\int x^n \cos(kx) \, dx = \frac{1}{k}x^n \sin(kx) - \frac{n}{k}\int x^{n-1}\sin(kx) \, dx$$

• With $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

Jiwen He, University of Houston

畃

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then

$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,

$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a} \int x^{n-1}e^{ax} dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,

$$\int x^n \cos(kx) \, dx = \frac{1}{k}x^n \sin(kx) - \frac{n}{k} \int x^{n-1}\sin(kx) dx$$

• With $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

$$\int x^n \sin(kx) \, dx = -\frac{1}{k}x^n \cos(kx) + \frac{n}{k} \int x^{n-1}\cos(kx) dx$$

Jiwen He, University of Houston

Ħ

$$\int u \, dv = uv - \int v \, du$$

If $F'(x) = f(x)$, then

$$\int x^n f(x) \, dx = x^n F(x) - n \int x^{n-1} F(x) dx$$

(Set $u = x^n$, $dv = f(x) \, dx$, $du = nx^{n-1} \, dx$, $v = F(x)$)
• With $f(x) = e^{ax}$ and $F(x) = \frac{1}{a}e^{ax}$,

$$\int x^n e^{ax} \, dx = \frac{1}{a}x^n e^{ax} - \frac{n}{a}\int x^{n-1}e^{ax} dx$$

• With $f(x) = \cos(kx)$ and $F(x) = \frac{1}{k}\sin(kx)$,

$$\int x^n \cos(kx) \, dx = \frac{1}{k}x^n \sin(kx) - \frac{n}{k}\int x^{n-1}\sin(kx) dx$$

• With $f(x) = \sin(kx)$ and $F(x) = -\frac{1}{k}\cos(kx)$,

$$\int x^n \sin(kx) \, dx = -\frac{1}{k}x^n \cos(kx) + \frac{n}{k}\int x^{n-1}\cos(kx) dx$$

J

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Jiwen He, University of Houston

∃ →

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Jiwen He, University of Houston

∃ →

A (1) > A (2) > A

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^{3}e^{2x} dx = \frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\int x^{2}e^{2x} dx$$

= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \int xe^{2x}dx\right)$
= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{2}\int e^{2x}dx\right)\right)$
= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right)\right) + C$
= $\frac{1}{8}e^{2x}\left(4x^{3} - 6x^{2} + 6x - 3\right) + C$

Jiwen He, University of Houston

∃ →

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Jiwen He, University of Houston

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^{3}e^{2x} dx = \frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\int x^{2}e^{2x} dx$$

= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \int xe^{2x}dx\right)$
= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{2}\int e^{2x}dx\right)\right)$
= $\frac{1}{2}x^{3}e^{2x} - \frac{3}{2}\left(\frac{1}{2}x^{2}e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right)\right) + C$
= $\frac{1}{8}e^{2x}\left(4x^{3} - 6x^{2} + 6x - 3\right) + C$

Jiwen He, University of Houston

∃ →

A (10) F (10)

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Jiwen He, University of Houston

▲ 同 ▶ → 三 ▶

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Jiwen He, University of Houston

$$\int x^n e^{ax} dx = \frac{1}{a} x^n e^{ax} - \frac{n}{a} \int x^{n-1} e^{ax} dx.$$

Examples

$$\int x^3 e^{2x} dx = \frac{1}{2} x^3 e^{2x} - \frac{3}{2} \int x^2 e^{2x} dx$$

= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \int x e^{2x} dx \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{2} \int e^{2x} dx \right) \right)$
= $\frac{1}{2} x^3 e^{2x} - \frac{3}{2} \left(\frac{1}{2} x^2 e^{2x} - \left(\frac{1}{2} x e^{2x} - \frac{1}{4} e^{2x} \right) \right) + C$
= $\frac{1}{8} e^{2x} (4x^3 - 6x^2 + 6x - 3) + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$
$$u = e^{x}, \, dv = \cos x \, dx, \text{ thus } du = e^{x} dx, \, v = \sin x$$
$$\int e^{x} \sin x \, dx$$
$$v = e^{x}, \, dv = \sin x \, dx, \text{ thus } du = e^{x} dx, \, v = -\cos x$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 7

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$
$$= e^{x}, \, dv = \cos x \, dx, \text{ thus } du = e^{x} dx, \, v = \sin x$$
$$e^{x} \sin x \, dx$$
$$= e^{x}, \, dv = \sin x \, dx, \text{ thus } du = e^{x} dx, \, v = -\cos x$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 7

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

$$u = e^x$$
, $dv = \cos x \, dx$, thus $du = e^x dx$, $v = \sin x$

 $e^x \sin x \, dx$

 $u = e^x$, $dv = \sin x \, dx$, thus $du = e^x dx$, $v = -\cos x$

6/9

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

$$e^{-1} \sin x + e^{-1} \cos x - \int e^{-1} \cos x \, dx$$

$$u = e^x$$
, $dv = \cos x \, dx$, thus $du = e^x dx$, $v = \sin x$

$$\int e^x \sin x \, dx$$

 $u = e^x$, $dv = \sin x \, dx$, thus $du = e^x dx$, $v = -\cos x$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

$$u = e^{x}$$
, $dv = \cos x \, dx$, thus $du = e^{x} \, dx$, $v = \sin x$
 $\int e^{x} \sin x \, dx$ is of the same form as $\int e^{x} \cos x \, dx$

 $u = e^x$, $dv = \sin x \, dx$, thus $du = e^x dx$, $v = -\cos x$

Jiwen He, University of Houston

/ 9

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$
$$= e^x \sin x + e^x \cos x - \int e^x \cos x \, dx$$

$$u = e^{x}, dv = \cos x dx, \text{ thus } du = e^{x} dx, v = \sin x$$
$$\int e^{x} \sin x dx$$
$$u = e^{x}, dv = \sin x dx, \text{ thus } du = e^{x} dx, v = -\cos x$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 7

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

$$u = e^{x}, dv = \cos x \, dx, \text{ thus } du = e^{x} dx, v = \sin x$$
$$\int e^{x} \sin x \, dx = e^{x} (-\cos x) - \int e^{x} (-\cos x) \, dx$$
$$u = e^{x}, dv = \sin x \, dx, \text{ thus } du = e^{x} dx, v = -\cos x$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

$$u = e^{x}, dv = \cos x \, dx, \text{ thus } du = e^{x} dx, v = \sin x$$
$$\int e^{x} \sin x \, dx = e^{x} (-\cos x) - \int e^{x} (-\cos x) \, dx$$
$$u = e^{x}, dv = \sin x \, dx, \text{ thus } du = e^{x} dx, v = -\cos x$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

 $e^x \sin x \, dx$ is cycling after two integrations by parts.

Jiwen He, University of Houston

February 5, 2008 6

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

"Solve" the equation for $\int e^x \cos x \, dx$:

$$2\int e^{x}\cos x \, dx = e^{x}(\sin x + \cos x) + C$$
$$\int e^{x}\cos x \, dx = \frac{1}{2}e^{x}(\sin x + \cos x) + C$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 7

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

Solve" the equation for
$$\int e^x \cos x \, dx$$
:

$$2 \int e^x \cos x \, dx = e^x (\sin x + \cos x) + C$$

$$\int e^x \cos x \, dx = \frac{1}{2} e^x (\sin x + \cos x) + C$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 7

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Cycling use the fact that functions such as $\sin x$, $\cos x$, e^x , $\sinh x$, $\cosh x$, \cdots , retain their form after differentiation or integration.

Example

$$\int e^{x} \cos x \, dx = e^{x} \sin x - \int e^{x} \sin x \, dx$$
$$= e^{x} \sin x + e^{x} \cos x - \int e^{x} \cos x \, dx$$

"Solve" the equation for
$$\int e^x \cos x \, dx$$
:

$$2\int e^{x}\cos x \, dx = e^{x}(\sin x + \cos x) + C$$
$$\int e^{x}\cos x \, dx = \frac{1}{2}e^{x}(\sin x + \cos x) + C$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x$$
, $dv = dx$, thus $du = x^{-1}dx$, $v = x$

 $\int v \, du = \int dx$ is easier than $\int u \, dv = \int \ln x \, dx$

Jiwen He, University of Houston

3

< 同 > < 三 >

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x$$
, $dv = dx$, thus $du = x^{-1}dx$, $v = x$

$$\int v \, du = \int dx \text{ is easier than } \int u \, dv = \int \ln x \, dx$$

Ħ

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

 $u = \ln x$, dv = dx, thus $du = x^{-1}dx$, v = x

$$\int v \, du = \int dx \text{ is easier than } \int u \, dv = \int \ln x \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

 $u = \ln x$, dv = dx, thus $du = x^{-1}dx$, v = x

$$\int v \, du = \int \, dx \text{ is easier than } \int u \, dv = \int \ln x \, dx$$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

$$u = \ln x$$
, $dv = dx$, thus $du = x^{-1}dx$, $v = x$
 $\int v \, du = \int dx$ is easier than $\int u \, dv = \int \ln x \, dx$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \ln x \, dx = x \ln x - \int x x^{-1} \, dx$$
$$= x \ln x - \int dx = x \ln x - x + C$$

 $u = \ln x$, dv = dx, thus $du = x^{-1}dx$, v = x $\int v \, du = \int dx$ is easier than $\int u \, dv = \int \ln x \, dx$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1 + x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln|1 + x^2| + C$$

$$u = \tan^{-1} x$$
, $dv = dx$, thus $du = \frac{1}{1+x^2} dx$, $v = x$

Set
$$u = 1 + x^2$$
, $du = 2x \, dx$,
 $\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$,

··· completely change their form after differentiation.

Examples

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1 + x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln|1 + x^2| + C$$

$$u = \tan^{-1} x$$
, $dv = dx$, thus $du = \frac{1}{1+x^2} dx$, $v = x$

Set
$$u = 1 + x^2$$
, $du = 2x \, dx$,
 $\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$,

 \cdots completely change their form after differentiation.

Examples

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1+x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln|1+x^2| + C$$

$$u = \tan^{-1} x$$
, $dv = dx$, thus $du = \frac{1}{1+x^2} dx$, $v = x$

Set
$$u = 1 + x^2$$
, $du = 2x \, dx$,
 $\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$,

· · · completely change their form after differentiation.

Examples

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1+x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln|1+x^2| + C$$

 $u = \tan^{-1} x$, dv = dx, thus $du = \frac{1}{1+x^2} dx$, v = x

Set
$$u = 1 + x^2$$
, $du = 2x \, dx$,
 $\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$,

· · · completely change their form after differentiation.

Examples

$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \int \frac{x}{1 + x^2} \, dx$$
$$= x \tan^{-1} x - \frac{1}{2} \ln|1 + x^2| + C$$

 $u = \tan^{-1} x$, dv = dx, thus $du = \frac{1}{1+x^2} dx$, v = x

Set
$$u = 1 + x^2$$
, $du = 2x \, dx$,
 $\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1 + x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int (x - \frac{x}{1 + x^{2}}) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} (x^{2} - \ln|1 + x^{2}|) + C$$
$$u = \tan^{-1} x, \, dv = x^{2} \, dx, \text{ thus } du = \frac{1}{1 + x^{2}} \, dx, \, v = \frac{1}{3} x^{3}$$
Jote that $\frac{x^{3}}{1 + x^{2}} = x - \frac{x}{1 + x^{2}}$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

и

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1 + x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1 + x^{2}}\right) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} \left(x^{2} - \ln|1 + x^{2}|\right) + C$$
$$= \tan^{-1} x, \, dv = x^{2} \, dx, \text{ thus } du = \frac{1}{1 + x^{2}} \, dx, \, v = \frac{1}{3} x^{3}$$

Jiwen He, University of Houston

7 / 9

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1 + x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1 + x^{2}}\right) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} \left(x^{2} - \ln|1 + x^{2}|\right) + C$$

 $u = \tan^{-1} x$, $dv = x^2 dx$, thus $du = \frac{1}{1+x^2} dx$, $v = \frac{1}{3}x^3$

Jiwen He, University of Houston

7/9

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1+x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1+x^{2}}\right) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} \left(x^{2} - \ln|1+x^{2}|\right) + C$$

$$u = \tan^{-1} x$$
, $dv = x^2 dx$, thus $du = \frac{1}{1+x^2} dx$, $v = \frac{1}{3}x^3$
Note that $\frac{x^3}{1+x^2} = x - \frac{x}{1+x^2}$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1+x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1+x^{2}}\right) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} \left(x^{2} - \ln|1+x^{2}|\right) + C$$

 $u = \tan^{-1} x, \ dv = x^2 \ dx, \ \text{thus} \ du = \frac{1}{1+x^2} \ dx, \ v = \frac{1}{3}x^3$ Note that $\frac{x^3}{1+x^2} = x - \frac{x}{1+x^2}$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int x^{2} \tan^{-1} x \, dx = \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \frac{x^{3}}{1 + x^{2}} \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{3} \int \left(x - \frac{x}{1 + x^{2}}\right) \, dx$$
$$= \frac{1}{3} x^{3} \tan^{-1} x - \frac{1}{6} \left(x^{2} - \ln|1 + x^{2}|\right) + C$$

 $u = \tan^{-1} x$, $dv = x^2 dx$, thus $du = \frac{1}{1+x^2} dx$, $v = \frac{1}{3}x^3$ Note that $\frac{x^3}{1+x^2} = x - \frac{x}{1+x^2}$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

$$u = \cos^{-1} x$$
, $dv = dx$, thus $du = -\frac{1}{\sqrt{1-x^2}} dx$, $v = x$

Set
$$u = 1 - x^2$$
, $du = -2x \, dx$,
 $\int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + \frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + \frac$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

 $u = \cos^{-1} x$, dv = dx, thus $du = -\frac{1}{\sqrt{1-x^2}} dx$, v = x

Set
$$u = 1 - x^2$$
, $du = -2x \, dx$,
 $\int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + \frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + \sqrt{u} + \frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + \sqrt{u} +$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

$$u = \cos^{-1} x$$
, $dv = dx$, thus $du = -\frac{1}{\sqrt{1-x^2}} dx$, $v = x$

Set
$$u = 1 - x^2$$
, $du = -2x \, dx$,
 $\int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + 0$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

$$u = \cos^{-1} x$$
, $dv = dx$, thus $du = -\frac{1}{\sqrt{1-x^2}} dx$, $v = x$

Set
$$u = 1 - x^2$$
, $du = -2x \, dx$,
 $\int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + C$

Integration by Parts

$$\int u \, dv = uv - \int v \, du$$

Change of form use the fact that functions $\ln x$, $\sin^{-1} x$, $\tan^{-1} x$, \cdots completely change their form after differentiation.

Examples

$$\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= x \cos^{-1} x - \sqrt{1 - x^2} + C$$

$$u = \cos^{-1} x$$
, $dv = dx$, thus $du = -\frac{1}{\sqrt{1-x^2}} dx$, $v = x$

Set
$$u = 1 - x^2$$
, $du = -2x \, dx$,
 $\int \frac{x}{\sqrt{1 - x^2}} \, dx = -\frac{1}{2} \int \frac{1}{\sqrt{u}} \, du = -\sqrt{u} + C$

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_{0}^{2} x^{3} \sqrt{4 - x^{2}} \, dx = -\frac{1}{3} x^{2} (4 - x^{2})^{\frac{3}{2}} \Big|_{0}^{2} - \frac{1}{3} \int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) \, dx$$
$$= -\frac{1}{3} \cdot \left(-\frac{64}{5}\right) = \frac{64}{15}$$

$$u = x^{2}, dv = x\sqrt{4 - x^{2}} dx, \text{ thus } du = 2x dx, v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, du = -2x dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}}(-2x) dx = \int_{4}^{0} u^{\frac{3}{2}} du = -\frac{2}{5}u^{\frac{5}{2}}\Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_{0}^{2} x^{3} \sqrt{4 - x^{2}} \, dx = -\frac{1}{3} x^{2} (4 - x^{2})^{\frac{3}{2}} \Big|_{0}^{2} - \frac{1}{3} \int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) \, dx$$
$$= -\frac{1}{3} \cdot \left(-\frac{64}{5}\right) = \frac{64}{15}$$

$$u = x^{2}, dv = x\sqrt{4 - x^{2}} dx, \text{ thus } du = 2x dx, v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, du = -2x dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) dx = \int_{4}^{0} u^{\frac{3}{2}} du = -\frac{2}{5} u^{\frac{5}{2}} \Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_{0}^{2} x^{3} \sqrt{4 - x^{2}} \, dx = -\frac{1}{3} x^{2} (4 - x^{2})^{\frac{3}{2}} \Big|_{0}^{2} - \frac{1}{3} \int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) \, dx$$
$$= -\frac{1}{3} \cdot \left(-\frac{64}{5}\right) = \frac{64}{15}$$

$$u = x^{2}, dv = x\sqrt{4 - x^{2}} dx, \text{ thus } du = 2x dx, v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, du = -2x dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) dx = \int_{4}^{0} u^{\frac{3}{2}} du = -\frac{2}{5}u^{\frac{5}{2}} \Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_0^2 x^3 \sqrt{4 - x^2} \, dx = -\frac{1}{3} x^2 (4 - x^2)^{\frac{3}{2}} \Big|_0^2 - \frac{1}{3} \int_0^2 (4 - x^2)^{\frac{3}{2}} (-2x) \, dx$$
$$= -\frac{1}{3} \cdot \left(-\frac{64}{5} \right) = \frac{64}{15}$$

$$u = x^{2}, dv = x\sqrt{4 - x^{2}} dx, \text{ thus } du = 2x dx, v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, du = -2x dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}}(-2x) dx = \int_{4}^{0} u^{\frac{3}{2}} du = -\frac{2}{5}u^{\frac{5}{2}}\Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_0^2 x^3 \sqrt{4 - x^2} \, dx = -\frac{1}{3} x^2 (4 - x^2)^{\frac{3}{2}} \Big|_0^2 - \frac{1}{3} \int_0^2 (4 - x^2)^{\frac{3}{2}} (-2x) \, dx$$
$$= -\frac{1}{3} \cdot \left(-\frac{64}{5}\right) = \frac{64}{15}$$

$$u = x^{2}, \ dv = x\sqrt{4 - x^{2}} \ dx, \ \text{thus} \ du = 2x \ dx, \ v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, \ du = -2x \ dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) \ dx = \int_{4}^{0} u^{\frac{3}{2}} \ du = -\frac{2}{5} u^{\frac{5}{2}} \Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture

Parts on Definite Integrals

Parts on Definite Integrals

$$\int_a^b u\,dv = (uv)|_a^b - \int_a^b v\,du$$

Example

$$\int_0^2 x^3 \sqrt{4 - x^2} \, dx = \left. -\frac{1}{3} x^2 (4 - x^2)^{\frac{3}{2}} \right|_0^2 \left. -\frac{1}{3} \int_0^2 (4 - x^2)^{\frac{3}{2}} (-2x) \, dx$$
$$= \left. -\frac{1}{3} \cdot \left(-\frac{64}{5} \right) \right. = \frac{64}{15}$$

$$u = x^{2}, \ dv = x\sqrt{4 - x^{2}} \ dx, \ \text{thus} \ du = 2x \ dx, \ v = -\frac{1}{3}(4 - x^{2})^{\frac{3}{2}}$$

Set $u = 4 - x^{2}, \ du = -2x \ dx,$
$$\int_{0}^{2} (4 - x^{2})^{\frac{3}{2}} (-2x) \ dx = \int_{4}^{0} u^{\frac{3}{2}} \ du = -\frac{2}{5} u^{\frac{5}{2}} \Big|_{0}^{4} = -\frac{64}{5}.$$

Jiwen He, University of Houston

Outline

- Integration by Parts
 - Undoing the Product Rule
 - Reduction
 - Cycling
 - Change of Form

• Parts on Definite Integrals

