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o In terms of differentials:
d(uv) —udv+vdu
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@ Integrate:
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@ Reduction: poly. x can be
reduced by diff.
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@ Change of Form: In x, sin~ ! x,
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Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.
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Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.

/ e* cos x dx

, dv = cos x dx, thus du = e*dx, v = sinx

u—-e~
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Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
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u = e*, dv = cos x dx, thus du = e*dx, v = sin x
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Integration by Parts

udv—uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.
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u = e*, dv = cos x dx, thus du = e*dx, v = sin x

/ex sin x dx is of the same form as /eX cos x dx
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Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.
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u = e*, dv = cos x dx, thus du = e*dx, v = sin x

/exsinxdx

u = e*, dv = sin x dx, thus du = e*dx, v = — cos x [lll
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Integration by Parts: Cycling

Integration by Parts

udv—uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.
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Integration by Parts

udv—uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.

/excosde:eXsinx—/eXsinxdx

= e*sinx + eX cosx — / e* cos x dx

u = e*, dv = cos x dx, thus du = e*dx, v = sin x
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u = e*, dv = sin x dx, thus du = e*dx, v = — cos x [lll
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Integration by Parts: Cycling

Integration by Parts

udv:uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, - - -, retain their form after differentiation or integration.

v

/eXcosxdx:eXsinx—/eXsinxdx

= e"sinx + e* cosx — / e* cos x dx

/eX sin x dx is cycling after two integrations by parts.

=
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Integration by Parts: Cycling

Integration by Parts

/udv:uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, -- -, retain their form after differentiation or integration.

v

/eXcosxdx:eXsinx—/eXsinxdx

= e"sinx + X cosx — / e* cos x dx

“Solve” the equation for | e cos x dx:
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Integration by Parts: Cycling

Integration by Parts

/udv:uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, -- -, retain their form after differentiation or integration.

v

/eXcosxdx:eXsinx—/eXsinxdx

= e"sinx + X cosx — / e* cos x dx

“Solve” the equation for | e cos x dx:

2/ e cosx dx = e*(sinx + cos x) + C

Jiwen He, University of Houston



Integration by Parts Parts on Definite Integrals

Integration by Parts: Cycling

Integration by Parts

/udv:uv—/vdu

Cycling use the fact that functions such as sin x, cos x, €%, sinh x,
cosh x, -- -, retain their form after differentiation or integration.

v

/eXcosxdx:eXsinx—/eXsinxdx

= e"sinx + X cosx — / e* cos x dx

“Solve” the equation for | e cos x dx:

2/ e cosx dx = e*(sinx + cos x) + C

/excosxdx:;ex(sinx+cosx)—|—C [lll
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Integration by Parts

/udv:uv—/vdu

Change of form use the fact that functions In x, sin™
- completely change their form after differentiation.

L X, tan—1! X,

v

N
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Integration by Parts

/udv:uv—/vdu

Change of form use the fact that functions In x, sin™
- completely change their form after differentiation.

L X, tan—1! X,

v

/Inxdx

u=Inx, dv = dx, thus du = x ldx, v = x

N
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Integration by Parts

/udv:uv—/vdu

Change of form use the fact that functions In x, sin™
- completely change their form after differentiation.
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v
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