Lecture 14
 Section 9.6 Curves Given Parametrically

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

Parametrized curve

Parametrized curve

A parametrized Curve is a path in
the $x y$-plane traced out by the point
$(x(t), y(t))$ as the parameter t
ranges over an interval /

$$
C=\{(x(t), y(t)): t \in I\}
$$

Examples

- The graph of a function $y=f(x), x \in I$, is a curve C that is

 parametrized by$$
x(+)=t, \quad y(t)=f(t), \quad t \in 1
$$

Parametrized curve

Parametrized curve

A parametrized Curve is a path in the $x y$-plane traced out by the point $(x(t), y(t))$ as the parameter t ranges over an interval 1 .

$$
C=\{(x(t), y(t)): t \in I\}
$$

Examples

- The graph of a function $y=f(x), x \in I$, is a curve C that is parametrized by

$$
x(t)=t, \quad y(t)=f(t)
$$

$$
t \in I .
$$

Parametrized curve

Parametrized curve

A parametrized Curve is a path in the $x y$-plane traced out by the point $(x(t), y(t))$ as the parameter t ranges over an interval l.

$$
C=\{(x(t), y(t)): t \in I\}
$$

Examples

- The graph of a function $y=f(x), x \in I$, is a curve C that is parametrized by

$$
x(t)=t, \quad y(t)=f(t), \quad t \in I
$$

- The graph of a polar equation $r=\rho(\theta), \theta \in I$, is a curve C that is parametrized by the functions $x(t)=r \cos t=\rho(t) \cos t \quad y(t)=r \sin t=\rho(t) \sin t$.

Parametrized curve

Parametrized curve

A parametrized Curve is a path in the $x y$-plane traced out by the point $(x(t), y(t))$ as the parameter t ranges over an interval I.

$$
C=\{(x(t), y(t)): t \in I\}
$$

Examples

- The graph of a function $y=f(x), x \in I$, is a curve C that is parametrized by

$$
x(t)=t, \quad y(t)=f(t), \quad t \in I
$$

- The graph of a polar equation $r=\rho(\theta), \theta \in I$, is a curve C that is parametrized by the functions

$$
x(t)=r \cos t=\rho(t) \cos t, \quad y(t)=r \sin t=\rho(t) \sin t, \quad t \in I
$$

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$
- Set $x(t)=3-t$, then $y(t)=6-2 t$, $t \in[0,2]$

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$
- Set $x(t)=3-t$, then $y(t)=6-2 t$, $t \in[0,2]$
- Set $x(t)=3-4 t$, then $y(t)=6-8 t$, $t \in[0,1 / 2]$

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$
- Set $x(t)=3-t$, then $y(t)=6-2 t$, $t \in[0,2]$
- Set $x(t)=3-4 t$, then $y(t)=6-8 t$, $t \in[0,1 / 2]$
- Set $x(t)=2-\cos t$, then $y(t)=4-2 \cos t, t \in[0,4 \pi]$

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$
- Set $x(t)=3-t$, then $y(t)=6-2 t$, $t \in[0,2]$
- Set $x(t)=3-4 t$, then $y(t)=6-8 t$, $t \in[0,1 / 2]$
- Set $x(t)=2-\cos t$, then $y(t)=4-2 \cos t, t \in[0,4 \pi]$

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

Example: Line Segment

Line Segment: $y=2 x, x \in[1,3]$

- Set $x(t)=t$, then $y(t)=2 t, t \in[1,3]$
- Set $x(t)=t+1$, then $y(t)=2 t+2$, $t \in[0,2]$
- Set $x(t)=3-t$, then $y(t)=6-2 t$, $t \in[0,2]$
- Set $x(t)=3-4 t$, then $y(t)=6-8 t$, $t \in[0,1 / 2]$
- Set $x(t)=2-\cos t$, then $y(t)=4-2 \cos t, t \in[0,4 \pi]$

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

Example：Parabola

Parabola Arc：$x=1-y^{2},-1 \leq y \leq 1$
－Set $y(t)=t$ ，then $x(t)=1-t^{2}, t \in[-1,1] \Rightarrow$ changing the domain to all real t gives us the whole parabola．
－Set $y(t)=\cos t$ ，then $x(t)=1-\cos ^{2} t, t \in[0, \pi] \Rightarrow$ changing the domain to all real t does not give us any more of the parabola．

Example: Parabola

Parabola Arc: $x=1-y^{2},-1 \leq y \leq 1$

- Set $y(t)=t$, then $x(t)=1-t^{2}, t \in[-1,1] \Rightarrow$ changing the domain to all real t gives us the whole parabola.
- Set $y(t)=\cos t$, then $x(t)=1-\cos ^{2} t, t \in[0, \pi] \Rightarrow$ changing the domain to all real t does not give us any more of the parabola.

Example: Parabola

Parabola Arc: $x=1-y^{2},-1 \leq y \leq 1$

- Set $y(t)=t$, then $x(t)=1-t^{2}, t \in[-1,1] \Rightarrow$ changing the domain to all real t gives us the whole parabola.
- Set $y(t)=\cos t$, then $x(t)=1-\cos ^{2} t, t \in[0, \pi] \Rightarrow$ changing the domain to all real t does not give us any more of the parabola.

Example: Spiral of Archimedes

Spiral of Archimedes: $r=\theta, \theta \geq 0$

- The curve is a nonending spiral. Here it is shown in detail from $\theta=0$ to $\theta=2 \pi$.
- The parametric representation is

Example: Spiral of Archimedes

Spiral of Archimedes: $r=\theta, \theta \geq 0$

- The curve is a nonending spiral. Here it is shown in detail from $\theta=0$ to $\theta=2 \pi$.
- The parametric representation is

Example: Spiral of Archimedes

Spiral of Archimedes: $r=\theta, \theta \geq 0$

- The curve is a nonending spiral. Here it is shown in detail from $\theta=0$ to $\theta=2 \pi$.
- The parametric representation is

$$
x(t)=t \cos t, \quad y(t)=t \sin t, \quad t \geq 0
$$

Example: Limaçons

$r=3+\cos \theta$ convex limaçon

$r=\frac{3}{2}+\cos \theta$ limaçon with a dimple

$r=1+\cos \theta$ cardioid

$r=\frac{1}{2}+\cos \theta$ limaçon with an inner loop

Limaçons (Snails): $r=a+b \cos \theta$

The parametric representation is

$$
x(t)=(a+b \cos t) \cos t, \quad y(t)=(a+b \cos t) \sin t, \quad t \in[0,2 \pi] .
$$

Example: Petal Curves

Petal Curves (Flowers): $r=a \cos n \theta, r=a \sin n \theta$

The parametric representations are

$$
\begin{array}{lll}
x(t)=(a \cos (n t)) \cos t, & y(t)=(a \cos (n t)) \sin t, & t \in[0,2 \pi] . \\
x(t)=(a \sin (n t)) \cos t, & y(t)=(a \sin (n t)) \sin t, & t \in[0,2 \pi] .
\end{array}
$$

Circles: $C=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2}$
$\Rightarrow \quad t \in[$ $\Rightarrow r=a$

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2}$

$\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t$

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$
$\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t$
Center O at $(0, a) \Rightarrow x^{2}+(y-a)^{2}=a^{2}$

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(0, a) \Rightarrow x^{2}+(y-a)^{2}=a^{2}$

Circles: $C=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(0, a) \Rightarrow x^{2}+(y-a)^{2}=a^{2} \Rightarrow r=2 a \sin \theta$

$$
\Rightarrow \quad t \in[0, \pi], \quad\left\{\begin{array}{l}
x(t)=2 a \sin t \cos t=a \sin 2 t \\
y(t)=2 a \sin t \sin t=a(1-\cos 2 t)
\end{array}\right.
$$

Another parametric representation is by translation

Circles: $C=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(0, a) \Rightarrow x^{2}+(y-a)^{2}=a^{2} \Rightarrow r=2 a \sin \theta$

$$
\Rightarrow \quad t \in[0, \pi], \quad\left\{\begin{array}{l}
x(t)=2 a \sin t \cos t=a \sin 2 t \\
y(t)=2 a \sin t \sin t=a(1-\cos 2 t) .
\end{array}\right.
$$

Another parametric representation is by translation

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(0, a) \Rightarrow x^{2}+(y-a)^{2}=a^{2} \Rightarrow r=2 a \sin \theta$

$$
\Rightarrow \quad t \in[0, \pi], \quad\left\{\begin{array}{l}
x(t)=2 a \sin t \cos t=a \sin 2 t \\
y(t)=2 a \sin t \sin t=a(1-\cos 2 t)
\end{array}\right.
$$

Another parametric representation is by translation

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t+a
$$

Circles: $C=\{P: d(P, O)=|a|\}$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(a, 0) \Rightarrow(x-a)^{2}+y^{2}=a^{2}$

Circles: $C=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(a, 0) \Rightarrow(x-a)^{2}+y^{2}=a^{2} \Rightarrow r=2 a \cos \theta$
\square
Another parametric representation is by translation

Circles: $C=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(a, 0) \Rightarrow(x-a)^{2}+y^{2}=a^{2} \Rightarrow r=2 a \cos \theta$

$$
\Rightarrow \quad t \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right], \quad\left\{\begin{array}{l}
x(t)=2 a \cos t \cos t=a(1+\cos 2 t), \\
y(t)=2 a \cos t \sin t=a \sin 2 t .
\end{array}\right.
$$

Another parametric representation is by translation $\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t+a, \quad y(t)=a \sin t$.

Circles: $\mathrm{C}=\{P: d(P, O)=|a|\}$

$r=2$

$r=-2$

$r=4 \sin \theta$

$r=-4 \cos \theta$

Center O at $(0,0) \Rightarrow x^{2}+y^{2}=a^{2} \Rightarrow r=a$

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t, \quad y(t)=a \sin t
$$

Center O at $(a, 0) \Rightarrow(x-a)^{2}+y^{2}=a^{2} \Rightarrow r=2 a \cos \theta$

$$
\Rightarrow \quad t \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right], \quad\left\{\begin{array}{l}
x(t)=2 a \cos t \cos t=a(1+\cos 2 t) \\
y(t)=2 a \cos t \sin t=a \sin 2 t
\end{array}\right.
$$

Another parametric representation is by translation

$$
\Rightarrow \quad t \in[0,2 \pi], \quad x(t)=a \cos t+a, \quad y(t)=a \sin t
$$

Ellipses

A ellipse is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant $2 a$.

$$
E=\left\{P:\left|d\left(P, F_{1}\right)+d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{a^{2}-c^{2}}$,

Ellipses

A ellipse is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant $2 a$.

$$
E=\left\{P:\left|d\left(P, F_{1}\right)+d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{a^{2}-c^{2}}$,

Ellipses

A ellipse is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant $2 a$.

$$
E=\left\{P:\left|d\left(P, F_{1}\right)+d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{a^{2}-c^{2}}$,

$$
E=\left\{(x, y): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}
$$

Ellipses: Cosine and Sine

The ellipse can also be given by a simple parametric form analogous to that of a circle, but with the x and y coordinates having different scalings,

$$
x=a \cos t, \quad y=b \sin t, \quad t \in(0,2 \pi)
$$

Note that $\cos ^{2} t+\sin ^{2} t=1$.

Hyperbolas

A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_{1} and F_{2})
separated by a distance $2 c$ is a given positive constant $2 a$.

$$
H=\left\{P:\left|d\left(P, F_{1}\right)-d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{c^{2}-a^{2}}$, we have

Hyperbolas

A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant $2 a$.

$$
H=\left\{P:\left|d\left(P, F_{1}\right)-d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{c^{2}-a^{2}}$, we have

A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_{1} and F_{2}) separated by a distance $2 c$ is a given positive constant $2 a$.

$$
H=\left\{P:\left|d\left(P, F_{1}\right)-d\left(P, F_{2}\right)\right|=2 a\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$ and setting $b=\sqrt{c^{2}-a^{2}}$, we have

$$
H=\left\{(x, y): \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right\}
$$

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

area of hyperbolic sector $=\frac{1}{2} t$
The right branch of a hyperbola can be parametrized by $x=a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)$.

The leit branch can be parametrized bv

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

area of hyperbolic sector $=\frac{1}{2} t$

The right branch of a hyperbola can be parametrized by

$$
x=a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)
$$

The left branch can be parametrized by

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

area of hyperbolic sector $=\frac{1}{2} t$

The right branch of a hyperbola can be parametrized by

$$
x=a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)
$$

The left branch can be parametrized by

$$
x=-a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)
$$

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

area of hyperbolic sector $=\frac{1}{2} t$

The right branch of a hyperbola can be parametrized by

$$
x=a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)
$$

The left branch can be parametrized by

$$
x=-a \cosh t, \quad y=b \sinh t, \quad t \in(-\infty, \infty)
$$

Note that $\cosh t=\frac{1}{2}\left(e^{t}+e^{-t}\right), \sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right)$ and $\cosh ^{2} t-\sinh ^{2} t=1$.

Hyperbolas: Other Parametric Representation

area of hyperbolic sector $=\frac{1}{2} t$
Another parametric representation for the right branch of the hyperbola is

$$
x=a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2) .
$$

Parametric equations for the left branch is

$$
x=-a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2)
$$

Hyperbolas: Other Parametric Representation

area of hyperbolic sector $=\frac{1}{2} t$
Another parametric representation for the right branch of the hyperbola is

$$
x=a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2)
$$

Parametric equations for the left branch is

$$
x=-a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2)
$$

Hyperbolas: Other Parametric Representation

area of hyperbolic sector $=\frac{1}{2} t$
Another parametric representation for the right branch of the hyperbola is

$$
x=a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2)
$$

Parametric equations for the left branch is

$$
x=-a \sec t, \quad y=b \tan t, \quad t \in(-\pi / 2, \pi / 2)
$$

Lemniscates (Ribbons): $r^{2}=a^{2} \cos 2 \theta$

$r^{2}=4 \cos 2 \theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_{1} and F_{2}) a distance $2 c$ away is the constant c^{2}. $R=\left\{P: d\left(P, F_{1}\right) \cdot d\left(P, F_{2}\right) \mid=c^{2}\right\}$ With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$
 Switching to polar coordinates give

星

Lemniscates (Ribbons): $r^{2}=a^{2} \cos 2 \theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_{1} and F_{2}) a distance $2 c$ away is the constant c^{2}.

$$
R=\left\{P: d\left(P, F_{1}\right) \cdot d\left(P, F_{2}\right) \mid=c^{2}\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$, Switching to polar coordinates gives

Lemniscates (Ribbons): $r^{2}=a^{2} \cos 2 \theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_{1} and F_{2}) a distance $2 c$ away is the constant c^{2}.

$$
R=\left\{P: d\left(P, F_{1}\right) \cdot d\left(P, F_{2}\right) \mid=c^{2}\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$,

$$
\left(x^{2}+y^{2}\right)^{2}=2 c^{2}\left(x^{2}-y^{2}\right)
$$

Switching to polar coordinates gives

Lemniscates (Ribbons): $r^{2}=a^{2} \cos 2 \theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_{1} and F_{2}) a distance $2 c$ away is the constant c^{2}.

$$
R=\left\{P: d\left(P, F_{1}\right) \cdot d\left(P, F_{2}\right) \mid=c^{2}\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$,

$$
\left(x^{2}+y^{2}\right)^{2}=2 c^{2}\left(x^{2}-y^{2}\right)
$$

Switching to polar coordinates gives

$$
r^{2}=2 c^{2} \cos 2 \theta, \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)
$$

The parametric equations for the lemniscate with $a^{2}=2 c^{2}$ is

Lemniscates (Ribbons): $r^{2}=a^{2} \cos 2 \theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_{1} and F_{2}) a distance $2 c$ away is the constant c^{2}.

$$
R=\left\{P: d\left(P, F_{1}\right) \cdot d\left(P, F_{2}\right) \mid=c^{2}\right\}
$$

With F_{1} at $(-c, 0)$ and F_{2} at $(c, 0)$,

$$
\left(x^{2}+y^{2}\right)^{2}=2 c^{2}\left(x^{2}-y^{2}\right)
$$

Switching to polar coordinates gives

$$
r^{2}=2 c^{2} \cos 2 \theta, \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \cup\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)
$$

The parametric equations for the lemniscate with $a^{2}=2 c^{2}$ is

$$
x=\frac{a \cos t}{1+\sin ^{2} t}, \quad y=\frac{a \sin t \cos t}{1+\sin ^{2} t}, \quad t \in(0,2 \pi)
$$

Outline

- Parametrized curve
- Parametrized curve
- Examples
- Locus
- Circles
- Ellipses
- Hyperbolas
- Lemniscates

