Lecture 14Section 9.6 Curves Given Parametrically

Jiwen He

1 Parametrized curve

1.1 Parametrized curve

Parametrized curve

Parametrized curve

A parametrized Curve is a path in the xy-plane traced out by the point (x(t), y(t)) as the parameter t ranges over an interval I.

 $C = \big\{(x(t),y(t)): t \in I\big\}$ Examples 1. • The graph of a function $y = f(x), \ x \in I$, is a curve C that is parametrized by

$$x(t) = t$$
, $y(t) = f(t)$, $t \in I$.

• The graph of a polar equation $r=\rho(\theta),\ \theta\in I,$ is a curve C that is parametrized by the functions

$$x(t) = r \cos t = \rho(t) \cos t$$
, $y(t) = r \sin t = \rho(t) \sin t$, $t \in I$.

1.2 Examples

Example: Line Segment

Line Segment: y = 2x, $x \in [1,3]$

- Set x(t) = t, then y(t) = 2t, $t \in [1, 3]$
- Set x(t) = t + 1, then y(t) = 2t + 2, $t \in [0, 2]$
- Set x(t) = 3 t, then y(t) = 6 2t, $t \in [0, 2]$
- Set x(t) = 3 4t, then y(t) = 6 8t, $t \in [0, 1/2]$

• Set $x(t) = 2 - \cos t$, then $y(t) = 4 - 2\cos t$, $t \in [0, 4\pi]$

We parametrize the line segment in different ways and interpret each parametrization as the motion of a particle with the parameter t being time.

Example: Parabola

Parabola Arc: $x = 1 - y^2, -1 \le y \le 1$

- Set y(t) = t, then $x(t) = 1 t^2$, $t \in [-1, 1] \Rightarrow$ changing the domain to all real t gives us the whole parabola.
- Set $y(t) = \cos t$, then $x(t) = 1 \cos^2 t$, $t \in [0, \pi] \Rightarrow$ changing the domain to all real t does not give us any more of the parabola.

Example: Spiral of Archimedes

Spiral of Archimedes: $r = \theta, \ \theta \ge 0$

- The curve is a nonending spiral. Here it is shown in detail from $\theta = 0$ to $\theta = 2\pi$.
- $\bullet\,$ The parametric representation is

$$x(t) = t \cos t$$
, $y(t) = t \sin t$, $t \ge 0$.

Example: Limaçons

Limaçons (Snails): $r = a + b \cos \theta$

The parametric representation is

$$x(t) = (a + b\cos t)\cos t$$
, $y(t) = (a + b\cos t)\sin t$, $t \in [0, 2\pi]$.

Example: Petal Curves

Petal Curves (Flowers): $r = a \cos n\theta$, $r = a \sin n\theta$

The parametric representations are

$$x(t) = (a\cos(nt))\cos t, \quad y(t) = (a\cos(nt))\sin t, \qquad t \in [0, 2\pi].$$

$$x(t) = \left(a\sin(nt)\right)\cos t, \quad y(t) = \left(a\sin(nt)\right)\sin t, \qquad \qquad t \in [0,2\pi].$$

2 Locus

2.1 Circles

Center
$$O$$
 at $(0,0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$

$$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t$$

Center O at $(0, a) \Rightarrow x^2 + (y - a)^2 = a^2 \Rightarrow x = 2a \sin \theta$

Center
$$O$$
 at $(0,0) \Rightarrow x^2 + y^2 = a^2 \Rightarrow r = a$
 $\Rightarrow t \in [0,2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t$
Center O at $(0,a) \Rightarrow x^2 + (y-a)^2 = a^2 \Rightarrow r = 2a \sin \theta$
 $\Rightarrow t \in [0,\pi], \quad \begin{cases} x(t) = 2a \sin t \cos t = a \sin 2t, \\ y(t) = 2a \sin t \sin t = a(1-\cos 2t). \end{cases}$
Another parametric representation is by translation

$$\Rightarrow t \in [0, 2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a$$
Center O at $(a, 0) \Rightarrow (x - a)^2 + y^2 = a^2 \Rightarrow r = 2a \cos \theta$

Center
$$O$$
 at $(a,0) \Rightarrow (x-a)^2 + y^2 = a \cos t$, $y(t) = a \sin t + a$

$$\Rightarrow t \in [0,2\pi], \quad x(t) = a \cos t, \quad y(t) = a \sin t + a$$

$$\Rightarrow t \in [\frac{\pi}{2}, \frac{3\pi}{2}], \quad \begin{cases} x(t) = 2a \cos t \cos t = a(1 + \cos 2t), \\ y(t) = 2a \cos t \sin t = a \sin 2t. \end{cases}$$
Another parametric representation is by translation

$$\Rightarrow$$
 $t \in [0, 2\pi], \quad x(t) = a \cos t + a, \quad y(t) = a \sin t.$

2.2Ellipses

A *ellipse* is the set of points P in a plane that the sum of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance 2c is a given positive constant 2a.

$$E = \{P : |d(P, F_1) + d(P, F_2)| = 2a\}$$

With F_1 at (-c,0) and F_2 at (c,0) and setting $b = \sqrt{a^2 - c^2}$,

$$E = \left\{ (x, y) : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \right\}$$

Ellipses: Cosine and Sine

The ellipse can also be given by a simple parametric form analogous to that of a circle, but with the x and y coordinates having different scalings,

$$x = a \cos t$$
, $y = b \sin t$, $t \in (0, 2\pi)$.

Note that $\cos^2 t + \sin^2 t = 1$.

2.3 Hyperbolas

Hyperbolas

A hyperbola is the set of points P in a plane that the difference of whose distances from two fixed points (the foci F_1 and F_2) separated by a distance 2c is a given positive constant 2a.

$$H = \{P : |d(P, F_1) - d(P, F_2)| = 2a\}$$

With F_1 at (-c,0) and F_2 at (c,0) and setting $b=\sqrt{c^2-a^2}$, we have

$$H = \left\{ (x, y) : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \right\}$$

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

$$x = a \cosh t$$
, $y = b \sinh t$, $t \in (-\infty, \infty)$.

The left branch can be parametrized by

$$x = -a \cosh t$$
, $y = b \sinh t$, $t \in (-\infty, \infty)$.

Note that $\cosh t = \frac{1}{2} (e^t + e^{-t})$, $\sinh t = \frac{1}{2} (e^t - e^{-t})$ and $\cosh^2 t - \sinh^2 t = 1$.

6

Hyperbolas: Other Parametric Representation

Another parametric representation for the right branch of the hyperbola is

$$x = a \sec t$$
, $y = b \tan t$, $t \in (-\pi/2, \pi/2)$.

Parametric equations for the left branch is

$$x = -a \sec t$$
, $y = b \tan t$, $t \in (-\pi/2, \pi/2)$.

2.4 Lemniscates

Lemniscates (Ribbons): $r^2 = a^2 \cos 2\theta$

A lemniscate is the set of points P in a plane that the product of whose distances from two fixed points (the foci F_1 and F_2) a distance 2c away is the constant

c².
$$R = \{P : d(P, F_1) \cdot d(P, F_2) | = c^2\}$$
 With F_1 at $(-c, 0)$ and F_2 at $(c, 0)$,

$$(x^2 + y^2)^2 = 2c^2(x^2 - y^2)$$

Switching to polar coordinates gives

$$r^2=2c^2\cos2\theta,\ \theta\in\left(-\frac{\pi}{4},\frac{\pi}{4}\right)\cup\left(\frac{3\pi}{4},\frac{5\pi}{4}\right)$$
 The parametric equations for the lemniscate with $a^2=2c^2$ is

$$x = \frac{a \cos t}{1 + \sin^2 t}, \quad y = \frac{a \sin t \cos t}{1 + \sin^2 t}, \quad t \in (0, 2\pi).$$

Outline

Contents

	rametrized curve Parametrized curve
1.2	Examples
Loc	
2.1	Circles
2.2	Ellipses
	Hyperbolas
2.4	Lemniscates