$Lecture ~16 {\rm Section}~9.8~{\rm Arc}~{\rm Length}~{\rm and}~{\rm Speed}$

Jiwen He

1 Arc Length

1.1 Arc Length

Arc Length Formulas

Definition 1. • We define the *element of length ds* $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$ • The total arc length is

C

$$L(C) = \int ds = \int_{a}^{b} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} dt$$

Arc Length and Speed Along a Plane Curve

What is the length of this curve?

Parametrization by the Motion

- Imaging an object moving along the curve C.
- Let $\mathbf{r}(t) = (x(t), y(t))$ the position of the object at time t.
- The velocity of the object at time t is $\mathbf{v}(t) = \mathbf{r}'(t) = (x'(t), y'(t)).$

Arc Length and Speed Along a Plane Curve

- The speed of the object at time t is $v(t) = \|\mathbf{v}(t)\| = \sqrt{[x'(t)]^2 + [y'(t)]^2}$.
- The distance traveled by the object from time zero to any later time t is

$$s(t) = \int ds = \int_0^t \sqrt{[x'(u)]^2 + [y'(u)]^2} \, du = \int_0^t v(u) \, du.$$

• We have ds = v(t) dt.

1.2 Examples

Length of the Arc on the Graph of y = f(x)

Length of $y = f(x), x \in [a, b]$ The length of the arc on the graph from a to x is $s(x) = \int_{a}^{x} \sqrt{1 + [f'(t)]^{2}} dt.$ $\Rightarrow ds = \sqrt{1 + [f'(x)]^{2}} dx.$

Proof.

Set $x(t) = t, y(t) = f(t), t \in [a, b]$. [1ex] Since x'(t) = 1, y'(t) = f'(t), then

$$s(x) = \int_{a}^{x} \sqrt{\left[x'(t)\right]^{2} + \left[y'(t)\right]^{2}} \, dt = \int_{a}^{x} \sqrt{1 + \left[f'(t)\right]^{2}} \, dt.$$
• The length of the parabolic arc: $f(x) = x^{2}, x \in [0]$

Example 2. • The length of the parabolic arc: $f(x) = x^2, x \in [0, 1]$, is given

$$\int_0^1 \sqrt{1 + [f'(x)]^2} \, dx = \int_0^1 \sqrt{1 + 4x^2} \, dx$$
$$= \left[x\sqrt{\frac{1}{4} + x^2} + \frac{1}{4}\ln(x + \sqrt{\frac{1}{4} + x^2}) \right]_0^1 = \frac{1}{2}\sqrt{5} + \frac{1}{4}\ln(2 + \sqrt{5}).$$

Length of the Arc on the Graph of $r=\rho(\theta)$

spiral of Archimedes

Length of $r = \rho(\theta), \ \theta \in [\alpha, \beta]$

The length of the arc on the graph from
$$\alpha$$
 to θ is

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{\left[\rho(t)\right]^2 + \left[\rho'(t)\right]^2} dt.$$

$$\Rightarrow \quad ds(\theta) = \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} d\theta$$

Proof.

Set $x(t) = \rho(t) \cos t$, $y(t) = \rho(t) \sin t$, $t \in [\alpha, \beta]$. [1ex] Since $[x'(t)]^2 + [y'(t)]^2 = [\rho(t)]^2 + [\rho'(t)]^2$, then

$$s(\theta) = \int_{\alpha}^{\theta} \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt = \int_{\alpha}^{\beta} \sqrt{[\rho(t)]^2 + [\rho'(t)]^2} \, dt.$$

Spiral of Archimedes: $r = \theta, \ \theta \ge 0$

• The length of the arc: $r = \theta, \ \theta \in [0, 2\pi]$, is given

$$\int_0^{2\pi} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta = \int_0^{2\pi} \sqrt{1 + \theta^2} \, d\theta$$
$$= \left[\frac{1}{2}\theta\sqrt{1 + \theta^2} + \frac{1}{2}\ln(\theta + \sqrt{1 + \theta^2})\right]_0^{2\pi} = \cdots$$

Example: Circle of Radius a: $L = 2\pi a$

Circle in Polar Coordinates

 $\begin{array}{ll} r=a, & 0\leq \theta\leq 2\pi \\ r=2a\sin\theta, & 0\leq \theta\leq \pi \end{array}$

$$L = \int_0^{2\pi} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta = \int_0^{2\pi} \sqrt{a^2 + 0} \, d\theta = 2\pi a$$

$$L = \int_0^{\pi} \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta$$
$$= \int_0^{\pi} \sqrt{\left[2a\sin\theta\right]^2 + \left[-2a\cos\theta\right]^2} \, d\theta = 2a \int_0^{\pi} d\theta = 2\pi a$$

Example: Limaçon

Limaçon: $r = 1 - \cos \theta$ The length of the cardioid: $r = 1 - \cos \theta$, $\theta \in [0, 2\pi]$, is given $\int_{0}^{2\pi} \sqrt{\left[\rho(\theta)\right]^{2} + \left[\rho'(\theta)\right]^{2}} \, d\theta = 2 \int_{0}^{\pi} \sqrt{\left[\sin \theta\right]^{2} + \left[1 - \cos \theta\right]^{2}} \, d\theta$ $= 2 \int_{0}^{\pi} \sqrt{2(1 - \cos \theta)} \, d\theta = 2 \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta \, d\theta = 8 \left[-\cos \frac{1}{2} \theta\right]_{0}^{\pi} = 8$

Example: Logarithmic spiral $r = ae^{b\theta}$

http://scienceblogs.com Logarithmic Spiral: $r = ae^{b\theta}$

- A *logarithmic spiral*, *equiangular spiral* or *growth spiral* is a special kind of spiral curve which often appears in nature.
- The polar equation of the curve is $r = ae^{b\theta}$ or $\theta = b^{-1}\ln(r/a)$.
- The spiral has the property that the angle ϕ between the tangent and radial line at the point (r, θ) is constant and $\phi = \arctan b^{-1}$.

Logarithmic Spiral in Motion $r = ae^{-b\theta}, \ \theta \ge 0$ Sprial Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point P and moving inward along the spiral with the angle φ. Let a be the straight-line distance from P to the origin. The spiral motion is described by

$$\frac{dr}{d\theta} = -br, \quad r(0) = a, \quad \text{with } b = \cot \phi.$$

The polar equation of the path is

$$r=ae^{-b\theta}, \quad \theta\geq 0$$

Length of the Logarithmic Spiral: $r = ae^{-b\theta}, \ \theta \ge 0$

• The length of the logarithmic spiral: $r = e^{-\theta}, \theta \ge 0$, is given

$$\begin{split} L(C) &= \int_0^\infty \sqrt{\left[\rho(\theta)\right]^2 + \left[\rho'(\theta)\right]^2} \, d\theta = \int_0^\infty \sqrt{\left[e^{-\theta}\right]^2 + \left[e^{-\theta}\right]^2} \, d\theta \\ &= \sqrt{2} \int_0^\infty e^{-\theta} \, d\theta = \sqrt{2} \left[-e^{-\theta}\right]_0^\pi = \sqrt{2} \end{split}$$

• The spiral motion $r = ae^{-b\theta}$, $\theta \ge 0$ circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

$$L(C) = \int_0^\infty ds = a/\cos(\phi), \quad \text{with } \phi = \cot^{-1} b.$$

Four Bugs Chasing One Another

Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square's center, the new square they define rotates and diminishes in size.

• Each bug starts at a corner of the orginal (unit) square that is $1/\sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi = \frac{\pi}{4}$. The spiral motion is described by $\frac{dr}{d\theta} = -r$, $r(0) = 1/\sqrt{2}$. The polar equation of the path is $r = 1/\sqrt{2}e^{-\theta}$, $\theta \ge 0$. The total distance covered on its path is L(C) = 1.

Outline

1

Contents

\mathbf{Arc}	c Length	1
1.1	Arc Length	 1
1.2	Examples	 3