Lecture 16Section 9.8 Arc Length and Speed

Jiwen He

1 Arc Length

1.1 Arc Length

Arc Length Formulas

Arc Length Formulas
Let $C=\{(x(t), y(t)): t \in I\} .[0.5 \mathrm{ex}]$ The length of C is

$$
\begin{gathered}
L(C)=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
d\left(P_{i-1}, P_{i}\right)=\sqrt{\left[x\left(t_{i}\right)-x\left(t_{i-1}\right)\right]^{2}+\left[y\left(t_{i}\right)-y\left(t_{i-1}\right)\right]^{2}} \\
=\sqrt{\left[\frac{x\left(t_{i}\right)-x\left(t_{i-1}\right)}{t_{i}-t_{i-1}}\right]^{2}+\left[\frac{y\left(t_{i}\right)-y\left(t_{i-1}\right)}{t_{i}-t_{i-1}}\right]^{2}}\left(t_{i}-t_{i-1}\right) \\
=\sqrt{\left[x^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[y^{\prime}\left(t_{i}^{*}\right)\right]^{2}} \Delta t_{i} \\
L(\gamma)=d\left(P_{0}, P_{1}\right)+\cdots+d\left(P_{i-1}, P_{i}\right)+\cdots+d\left(P_{n-1}, P_{n}\right) \\
=\sum_{i=1}^{n} \sqrt{\left[x^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[y^{\prime}\left(t_{i}^{*}\right)\right]^{2}} \Delta t_{i} \rightarrow L(C) \quad \text { as } \Delta t_{i} \rightarrow 0 .
\end{gathered}
$$

Definition 1. - We define the element of length $d s$

$$
d s=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

- The total arc length is

$$
L(C)=\int d s=\int_{a}^{b} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

Arc Length and Speed Along a Plane Curve

Parametrization by the Motion

- Imaging an object moving along the curve C.
- Let $\mathbf{r}(t)=(x(t), y(t))$ the position of the object at time t.
- The velocity of the object at time t is $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)$.

Arc Length and Speed Along a Plane Curve

- The speed of the object at time t is $v(t)=\|\mathbf{v}(t)\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}$.
- The distance traveled by the object from time zero to any later time t is

$$
s(t)=\int d s=\int_{0}^{t} \sqrt{\left[x^{\prime}(u)\right]^{2}+\left[y^{\prime}(u)\right]^{2}} d u=\int_{0}^{t} v(u) d u
$$

- We have $d s=v(t) d t$.

1.2 Examples

Length of the Arc on the Graph of $y=f(x)$

Length of $y=f(x), x \in[a, b]$
The length of the arc on the graph from a to x is

$$
\begin{aligned}
& s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t \\
& \Rightarrow \quad d s=\sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
\end{aligned}
$$

Proof.
Set $x(t)=t, y(t)=f(t), t \in[a, b]$. [1ex] Since $x^{\prime}(t)=1, y^{\prime}(t)=f^{\prime}(t)$, then

$$
s(x)=\int_{a}^{x} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t .
$$

Example 2. - The length of the parabolic arc: $f(x)=x^{2}, x \in[0,1]$, is given

$$
\begin{aligned}
& \int_{0}^{1} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x=\int_{0}^{1} \sqrt{1+4 x^{2}} d x \\
= & {\left[x \sqrt{\frac{1}{4}+x^{2}}+\frac{1}{4} \ln \left(x+\sqrt{\frac{1}{4}+x^{2}}\right)\right]_{0}^{1}=\frac{1}{2} \sqrt{5}+\frac{1}{4} \ln (2+\sqrt{5}) . }
\end{aligned}
$$

Length of the Arc on the Graph of $r=\rho(\theta)$

Length of $r=\rho(\theta), \theta \in[\alpha, \beta]$
The length of the arc on the graph from α to θ is

$$
\begin{aligned}
& s(\theta)=\int_{\alpha}^{\theta} \sqrt{[\rho(t)]^{2}+\left[\rho^{\prime}(t)\right]^{2}} d t \\
\Rightarrow & d s(\theta)=\sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta
\end{aligned}
$$

Proof.
Set $x(t)=\rho(t) \cos t, y(t)=\rho(t) \sin t, t \in[\alpha, \beta] .[1 \mathrm{ex}]$ Since $\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}=$ $[\rho(t)]^{2}+\left[\rho^{\prime}(t)\right]^{2}$, then

$$
s(\theta)=\int_{\alpha}^{\theta} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t=\int_{\alpha}^{\beta} \sqrt{[\rho(t)]^{2}+\left[\rho^{\prime}(t)\right]^{2}} d t
$$

Spiral of Archimedes: $r=\theta, \theta \geq 0$

- The length of the arc: $r=\theta, \theta \in[0,2 \pi]$, is given

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{1+\theta^{2}} d \theta \\
& =\left[\frac{1}{2} \theta \sqrt{1+\theta^{2}}+\frac{1}{2} \ln \left(\theta+\sqrt{1+\theta^{2}}\right)\right]_{0}^{2 \pi}=\cdots
\end{aligned}
$$

Example: Circle of Radius $a: L=2 \pi a$

Circle in Polar Coordinates

$$
\begin{gathered}
r=a, \quad 0 \leq \theta \leq 2 \pi \\
r=2 a \sin \theta, \quad 0 \leq \theta \leq \pi \\
L=\int_{0}^{2 \pi} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{a^{2}+0} d \theta=2 \pi a \\
L=\int_{0}^{\pi} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta \\
=\int_{0}^{\pi} \sqrt{[2 a \sin \theta]^{2}+[-2 a \cos \theta]^{2}} d \theta=2 a \int_{0}^{\pi} d \theta=2 \pi a
\end{gathered}
$$

Example: Limaçon

Limaçon: $r=1-\cos \theta$
The length of the cardioid: $r=1-\cos \theta, \theta \in[0,2 \pi]$, is given

$$
\begin{aligned}
& \int_{0}^{2 \pi} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta=2 \int_{0}^{\pi} \sqrt{[\sin \theta]^{2}+[1-\cos \theta]^{2}} d \theta \\
& =2 \int_{0}^{\pi} \sqrt{2(1-\cos \theta)} d \theta=2 \int_{0}^{\pi} 2 \sin \frac{1}{2} \theta d \theta=8\left[-\cos \frac{1}{2} \theta\right]_{0}^{\pi}=8
\end{aligned}
$$

Example: Logarithmic spiral $r=a e^{b \theta}$

http://scienceblogs.com
Logarithmic Spiral: $r=a e^{b \theta}$

- A logarithmic spiral, equiangular spiral or growth spiral is a special kind of spiral curve which often appears in nature.
- The polar equation of the curve is $r=a e^{b \theta}$ or $\theta=b^{-1} \ln (r / a)$.
- The spiral has the property that the angle ϕ between the tangent and radial line at the point (r, θ) is constant and $\phi=\arctan b^{-1}$.

Logarithmic Spiral in Motion $r=a e^{-b \theta}, \theta \geq 0$
Sprial Motions

- The approach of a hawk to its prey. Their sharpest view is at an angle to their direction of flight.
- The approach of an insect to a light source. They are used to having the light source at a constant angle to their flight path.
- Starting at a point P and moving inward along the spiral with the angle ϕ. Let a be the straight-line distance from P to the origin. The spiral motion is described by

$$
\frac{d r}{d \theta}=-b r, \quad r(0)=a, \quad \text { with } b=\cot \phi
$$

The polar equation of the path is

$$
r=a e^{-b \theta}, \quad \theta \geq 0
$$

Length of the Logarithmic Spiral: $r=a e^{-b \theta}, \theta \geq 0$

- The length of the logarithmic spiral: $r=e^{-\theta}, \theta \geq 0$, is given

$$
\begin{aligned}
L(C) & =\int_{0}^{\infty} \sqrt{[\rho(\theta)]^{2}+\left[\rho^{\prime}(\theta)\right]^{2}} d \theta=\int_{0}^{\infty} \sqrt{\left[e^{-\theta}\right]^{2}+\left[e^{-\theta}\right]^{2}} d \theta \\
& =\sqrt{2} \int_{0}^{\infty} e^{-\theta} d \theta=\sqrt{2}\left[-e^{-\theta}\right]_{0}^{\pi}=\sqrt{2}
\end{aligned}
$$

- The spiral motion $r=a e^{-b \theta}, \theta \geq 0$ circles the origin an unbounded number of times without reaching it; yet, the total distance covered on this path is finite:

$$
L(C)=\int_{0}^{\infty} d s=a / \cos (\phi), \quad \text { with } \phi=\cot ^{-1} b
$$

Four Bugs Chasing One Another

Four Bugs Chasing One Another

- Four bugs are at the corners of a square.
- They start to crawl clockwise at a constant rate, each moving toward its neighbor.
- At any instant, they mark the corners of a square. As the bugs get closer to the original square's center, the new square they define rotates and diminishes in size.
- Each bug starts at a corner of the orginal (unit) square that is $1 / \sqrt{2}$ away from the origin (i.e., center) and moves inward along the spiral with the angle $\phi=\frac{\pi}{4}$. The spiral motion is described by $\frac{d r}{d \theta}=-r, r(0)=1 / \sqrt{2}$. The polar equation of the path is $r=1 / \sqrt{2} e^{-\theta}, \theta \geq 0$. The total distance covered on its path is $L(C)=1$.

Outline

Contents

1 Arc Length 1
1.1 Arc Length 1
1.2 Examples 3

