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Real Numbers Sequences Review LUB

Basic Properties of R: R being Ordered

Classification

N = {0, 1, 2, . . .} = {natural numbers}
Z = {. . . ,−2,−1, 0, 1, 2, . . . , } = {integers}
Q = {p

q : p, q ∈ Z, q 6= 0} = {rational numbers}

R = {real numbers} = Q ∪ {irrational numbers (π,
√

2,. . .)}

R is An Ordered Field

x ≤ y and y ≤ z ⇒ x ≤ z .

x ≤ y and y ≤ x ⇔ x = y .

∀x , y ∈ R ⇒ x ≤ y or y ≤ x .

x ≤ y and z ∈ R ⇒ x + z ≤ y + z .

x ≥ 0 and y ≥ 0 ⇒ xy ≥ 0.
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Real Numbers Sequences Review LUB

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

∀x > 0, ∀y > 0, ∃n ∈ N such that nx > y .

Dedekind Cut Axiom

Let E and F be two nonempty subsets of R such that

E ∪ F = R;

E ∩ F = ∅;
∀x ∈ E , ∀y ∈ F , we have x ≤ y .

Then, ∃z ∈ R such that

x ≤ z , ∀x ∈ E and z ≤ y , ∀y ∈ F .

Least Upper Bound Theorem

Every nonempty subset S of R with an upper bound has a least
upper bound (also called supremum).
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Real Numbers Sequences Review LUB

Basic Properties of R: Least Upper Bound Property

Definition

Let S be a nonempty subset S of R.

S is bounded above if ∃M ∈ R such that x ≤ M for all x ∈ S ;
M is called an upper bound for S .

S is bounded below if ∃m ∈ R such that x ≥ m for all x ∈ S ;
m is called an lower bound for S .

S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of R with an upper bound has a least
upper bound (also called supremum).

Proof.

Let F = {upper bounds for S} and E = R \ E ⇒ (E ,F ) is a
Dedekind cut ⇒ ∃b ∈ R such that x ≤ b, ∀x ∈ E and b ≤ y ,
∀y ∈ F ; b is also an upper bound of S ⇒ b is the lub of S .
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Real Numbers Sequences Review LUB

Supremum or Infimum of a Set S
Definition

Let S be a nonempty subset of R with an upper bound. We denote
by sup(S) or lub(S) the supremum or least upper bound of S .

Theorem

Let M = sup(S). Then

x ≤ M, ∀x ∈ S;

∀ε > 0, (M − ε,M] ∩ S 6= ∅
Definition

Let S be a nonempty subset of R with a lower bound. We denote
by inf(S) or glb(S) the infimum or greatest lower bound of S .

Theorem

Let m = inf(S). Then

x ≥ m, ∀x ∈ S;

∀ε > 0, [m,m + ε] ∩ S 6= ∅
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Real Numbers Sequences Review LUB

Examples: Supremum or Infimum of a Set S

Examples

Every finite subset of R has both upper and lower bounds:
sup{1, 2, 3} = 3, inf{1, 2, 3} = 1.

If a < b, then
b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].

If S = {q ∈ Q : e < q < π}, then inf S = e, sup S = π.

If S = {x ∈ R : x2 < π}, then inf S = −
√

3, sup S =
√

3.

If S = {x ∈ Q : x2 < π}, then inf S = −
√

3, sup S =
√

3.

Theorem

The notions of infimum and supremum are dual in the sense that

inf(S) = − sup(−S)

where −S = {−s|s ∈ S}.
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Real Numbers Sequences

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the
set of positive integers N∗:

N∗ = {1, 2, . . .} 3 n 7→ an = f (n) ∈ R.

where the nth term f (n) is denoted by an.

The sequence a1, a2, . . ., is denoted by (an)
∞
n=1 or (an).

Examples

an = 1
n , n ∈ N∗, is the sequence 1, 1

2 , 1
3 , 1

4 , . . .;

an = n
n+1 , n ∈ N∗, is the sequence 1

2 , 2
3 , 3

4 , 4
5 , . . .;

an = n2, n ∈ N∗, is the sequence 1, 4, 9, 16, . . .;

an = cos nπ = (−1)n, n ∈ N∗, is the sequence −1, 1, −1, . . ..
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Real Numbers Sequences

Limit of a Sequence

Definition

Let (an)
∞
n=1 be a sequence of real numbers. A real number L is a

limit of (an)
∞
n=1, denoted by

L = lim
n→∞

an,

if ∀ε > 0, ∃N ∈ N such that |an − L| < ε, ∀n > N.

Examples

If an = 1
n+1 , n ∈ N∗, then limn→∞ an = 0.

For any ε > 0 given, choose N > 0 such that εN > 1, i.e.,
1
N < ε. Then, if n > N, we have 0 < 1

n+1 < 1
N+1 < ε.

If an = n
n+1 , n ∈ N∗, then limn→∞ an = 1.

For any ε > 0 given, choose N > 0 such that εN > 1, i.e.,
1
N < ε. Then, if n > N, we have 0 <

∣∣∣ n
n+1 − 1

∣∣∣ = 1
n < 1

N < ε.
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Real Numbers Sequences

Convergent Sequence

Definition

A sequence that has a limit is said to be convergent.

A sequence that has no limit is said to be divergent.

Uniqueness of Limit

If limn→∞ an = L and limn→∞ an = M, then L = M.

Proof.

∀ε > 0, ∃N > 0 such that |an − L| < ε
2 and |an −M| < ε

2 , ∀n > N.
⇒ |L−M| ≤ |an − L|+ |an −M| < ε ⇒ L = M.

Example

If an = cos nπ = (−1)n, n ∈ N∗, the sequence (an) is
divergent.
If ε = 1

3 , then the interval (x − 1
3 , x + 1

3) has a length 2
3 that

is < 1; ∀x ∈ R, it can not contain 1 and −1 at the same time.
Therefore it is not possible to find N such that |an − x | < 1

3 if
n > N.
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Real Numbers Sequences

Boundedness of a Sequence

Definition

A sequence (an)
∞
n=1 is bounded above or bounded below or

bounded if the set S = {a1, a2, . . .} is bounded above or bounded
below or bounded.

Examples

If an = 1
n+1 , n ∈ N∗, then the sequence (an) is bounded above

by M ≥ 1 and bounded below by m ≤ 0.

If an = cos nπ = (−1)n, n ∈ N∗, then M ≥ 1 is an upper
bound for the sequence (an) and m ≤ −1 is an lower bound
for the sequence (an).

Theorem

Every convergent sequence is bounded.
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Real Numbers Sequences

Monotonic Sequence

Definition

A sequence (an)
∞
n=1 is increasing if an ≤ an+1 for all n ∈ N∗.

A sequence (an)
∞
n=1 is decreasing if an ≥ an+1 for all n ∈ N∗.

Theorem

A bounded, increasing sequence converges to its lub;

a bounded, decreasing sequence converges to its glb.

Examples

If an = 1
n+1 , n ∈ N∗, then (an) is decreasing, bounded, and

limn→∞ an = inf(an) = 0. ⇐ an+1

an
= 1

n+2
n+1
1 = n+1

n+2 < 1

If an = n2, n ∈ N∗, then (an) is increasing, but unbounded
above, therefore is divergent.
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Real Numbers Sequences

Example

Example

Let an = n
n+1 , n ∈ N∗.

(an) is increasing ⇐ an+1

an
= n+1

n+2 ·
n+1
n = n2+2n+1

n2+2n
> 1

The sequence displays as 1
2 , 2

3 , 3
4 , . . ., 99

100 , . . ..

⇒ sup(an) = 1 and inf(an) = 1
2

⇒ lim
n→∞

an = sup(an) = 1.
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Real Numbers Sequences

Example

Example

Let an = 2n

n with n= n(n − 1) · · · 1.

(an) is decreasing

⇐ an+1

an
=

2n+1

(n + 1)

n

2n
=

2

n + 1
< 1

sup(an) = 2 and inf(an) = 0

⇒ lim
n→∞

an = inf(an) = 0.
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Real Numbers Sequences

Example

Example

Let an = n
en .

(an) is decreasing

⇐ Let f (x) = x
ex .

f ′(x) =
ex − xex

e2x
=

1− x

ex
< 0

sup(an) = 1
e and inf(an) = 0.

⇒ lim
n→∞

an = inf(an) = 0.
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Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Example

Example

Let an = n
1
n , n = 1, 2, . . .

(an) is decreasing for n ≥ 3

Let f (x) = x1/x = e(1/x) ln x .

f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 15 / 16



Real Numbers Sequences

Outline

Real Numbers
Review
Least Upper Bound

Sequences of Real Numbers

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 17 March 11, 2008 16 / 16


	Real Numbers
	Review
	LUB

	Sequences of Real Numbers

