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Basic Properties of R: R being Ordered

Classification

o N={0,1,2,...} = {natural numbers}
eZ={...,—2,-1,0,1,2,..., } = {integers}

e Q= {g : p,q €7, q# 0} = {rational numbers}

@ R = {real numbers} = Q U {irrational numbers (7,v/2,...)}

R is An Ordered Field
ox<yandy<z = x<z

ox<yandy<x & x=y.
eVx,yeR = x<yory<x
ox<yandzeR = x+4+z<y+z
ex>0andy>0 = xy>0. [l]l
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Let S be a nonempty subset S of R.
o S is bounded above if IM € R such that x < M for all x € S;
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@ Every finite subset of R has both upper and lower bounds:
sup{1,2,3} = 3, inf{1,2,3} = 1.

If a < b, then

b = sup|a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].
fS={qgecQ:e<qg<m}, theninf S=¢e, sup S=r.
If S={x€R:x2< 7}, then inf S=—3, sup S =+3.
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The notions of infimum and supremum are dual in the sense that

inf(S) = —sup(—S)
where —S = {—s|s € S§}. [lll
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Definition
A sequence of real numbers is a real-valued function defined on the

set of positive integers N*:
N*={1,2,...} 3n—a,="f(n) eR.

where the nt" term f(n) is denoted by a,.

The sequence a1, a, ..., is denoted by (a,)7°; or (a,).

Examples

BIW K=

E' ) e oy

@ a, = n—?—l' n € N*, is the sequence

@ a, =1, neN* is the sequence 1, % %
1 2
2' 3

EIFS
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Sequences: Definition

Definition
A sequence of real numbers is a real-valued function defined on the
set of positive integers N*:

N*={1,2,...} 5n—a,=f(n) eR.

where the nt" term f(n) is denoted by a,.

The sequence a1, a, ..., is denoted by (a,)7°; or (a,).

Examples

@ a,= % n € N*, is the sequence 1,
@ a, = n—?—l' n € N*, is the sequence

@ a, = n?, n e N* is the sequence 1, 4, 9, 16, .. ;

BIW K=

11
2' 3
12 4
2' 3 5
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Sequences: Definition

Definition
A sequence of real numbers is a real-valued function defined on the
set of positive integers N*:

N*={1,2,...} 5n—a,=f(n) eR.

where the nt" term f(n) is denoted by a,.

The sequence a1, a, ..., is denoted by (a,)7°; or (a,).
@ a, =1 neN* is the se I :
n= . quence 1, 5, 3, 7, --
@ a,= n—?—l' n € N*, is the sequence % % %, %,
@ a, = n?, n e N* is the sequence 1, 4, 9, 16, .. ;
@ a, =cosnm = (—1)", n € N*, is the sequence —1, 1, —1, .... [lll
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Limit of a Sequence

Definition

Let (an)72; be a sequence of real numbers. A real number L is a
limit of (a,)%2,, denoted by

L= lim an,
n—oo

Ve >0, 3N € N such that |a, — L| < €,Vn > N.

if
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Limit of a Sequence

Definition

Let (an)72; be a sequence of real numbers. A real number L is a
limit of (a,)%2,, denoted by

L= lim an,
n—oo

Ve >0, 3N € N such that |a, — L| < €,Vn > N.

o If a, = n € N*, then lim,,_,,, a, = 0.

if

_1
n+1"’
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Limit of a Sequence

Definition

Let (an)72; be a sequence of real numbers. A real number L is a
limit of (a,)%2,, denoted by

L= lim an,
n—oo

Ve >0, 3N € N such that |a, — L| < €,Vn > N.

o If a, = ﬁ n € N*, then lim,_s a, = 0.
For any € > 0 given, choose N>Osuch that eN > 1, i.e
%<e. Then, if n > N, we have 0 < 1<N+1<5

if
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Limit of a Sequence

Definition

Let (an)72; be a sequence of real numbers. A real number L is a
limit of (a,)%2,, denoted by

L= lim an,
n—oo

Ve >0, 3N € N such that |a, — L| < €,Vn > N.

o If a, = ﬁ n € N*, then lim,_s a, = 0.
For any € > 0 given, chooseN>Osuch that eN > 1, i.e
N<e Then, if n > N, we have 0 < 1<N+1<5

if

o If a, = n € N*, then lim,,_,, a, = 1.

n+1’
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Limit of a Sequence

Definition
Let (an)72; be a sequence of real numbers. A real number L is a
limit of (a,)%2,, denoted by

L= lim an,
n—oo

Ve >0, 3N € N such that |a, — L| < €,Vn > N.

o If a, = ﬁ n € N*, then lim,_s a, = 0.
For any € > 0 given, chooseN>Osuch that eN > 1, i.e
N<e Then, if n > N, we have 0 < 1<N+1<5

if

o If a, = m, n € N*, then lim,,_,, a, = 1.
For any € > 0 given, choose N > 0 such that eN > 1, i.e.,

%<e. Then,ifn>N,wehaveO<’ﬁ—1 :%<%<e. [Fl
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If imp,—ooan =L and lim,—s a, = M, then L = M.

Proof.
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Convergent Sequence

Definition
@ A sequence that has a limit is said to be convergent.

@ A sequence that has no limit is said to be divergent.

Uniqueness of Limit
If imp,—ooan =L and lim,—o a, = M, then L = M.

Proof.
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Convergent Sequence

Definition
@ A sequence that has a limit is said to be convergent.

@ A sequence that has no limit is said to be divergent.

Uniqueness of Limit

If imp,—ooan =L and lim,—o a, = M, then L = M.

Ve >0, 3N > 0 such that |a, — L| < 5 and |a, — M| < §, Vn > N.
= [L-M|<|ap—L|+]an—M|<e = L=M.

o If a, = cosnm = (—1)", n € N*, the sequence (a,) is

divergent.
If e = %, then the interval (x — 1,x + 1) has a length 3 that

is <1, [lll
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Convergent Sequence

Definition
@ A sequence that has a limit is said to be convergent.

@ A sequence that has no limit is said to be divergent.

Uniqueness of Limit

If imp,—ooan =L and lim,—o a, = M, then L = M.

Ve >0, 3N > 0 such that |a, — L| < 5 and |a, — M| < §, Vn > N.
= [L-M|<|ap—L|+]an—M|<e = L=M.

o If a, = cosnm = (—1)", n € N*, the sequence (a,) is
divergent.
If e = %, then the interval (x — 1,x + 1) has a length 3 that
is < 1; Vx € R, it can not contain 1 and —1 at the same time. [lll
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Convergent Sequence

Definition
@ A sequence that has a limit is said to be convergent.

@ A sequence that has no limit is said to be divergent.

Uniqueness of Limit
If imp,—ooan =L and lim,—o a, = M, then L = M.

Ve >0, 3N > 0 such that |a, — L| < 5 and |a, — M| < §, Vn > N.
= [L-M|<|ap—L|+]an—M|<e = L=M.

o If a, = cosnm = (—1)", n € N*, the sequence (a,) is
divergent.
If e = %, then the interval (x — 1,x + 1) has a length 3 that
is < 1; Vx € R, it can not contain 1 and —1 at the same time. [lll
Therefore it is not possible to find N such that |a, — x| < § if

N A
Jiwen He, University of Houston
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Boundedness of a Sequence

A sequence (ap)%°, is bounded above or bounded below or
bounded if the set S = {a1, a,...} is bounded above or bounded
below or bounded.

v

Examples
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bounded if the set S = {a1, a,...} is bounded above or bounded
below or bounded.

v

Examples

o Ifa,= ﬁ n € N*, then the sequence (a,) is bounded above
by M > 1 and bounded below by m < 0.
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Boundedness of a Sequence

A sequence (ap)%°, is bounded above or bounded below or
bounded if the set S = {a1, a,...} is bounded above or bounded
below or bounded.

v

Examples

o If a, = ﬁ n € N*, then the sequence (a,) is bounded above

by M > 1 and bounded below by m < 0.

o If a, =cosnm = (—1)", n € N*, then M > 1 is an upper
bound for the sequence (a,) and m < —1 is an lower bound
for the sequence (ap).
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by M > 1 and bounded below by m < 0.
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bound for the sequence (a,) and m < —1 is an lower bound
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Boundedness of a Sequence

A sequence (ap)$2, is bounded above or bounded below or
bounded if the set S = {a1, a2, ...} is bounded above or bounded
below or bounded.
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o Ifa, = n € N*, then the sequence (a,) is bounded above

1
n+1r
by M > 1 and bounded below by m < 0.
o If a, = cosnm = (—1)", n € N*, then M > 1 is an upper
bound for the sequence (a,) and m < —1 is an lower bound
for the sequence (ap).

Every convergent sequence is bounded.
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Boundedness of a Sequence

A sequence (ap)$2, is bounded above or bounded below or
bounded if the set S = {a1, a2, ...} is bounded above or bounded
below or bounded.

v

Examples

o Ifa, = n € N*, then the sequence (a,) is bounded above

1
n+1r
by M > 1 and bounded below by m < 0.
o If a, = cosnm = (—1)", n € N*, then M > 1 is an upper
bound for the sequence (a,) and m < —1 is an lower bound
for the sequence (ap).

Every convergent sequence is bounded.

limpocan=L = Ve>0,dAN € Ns.t. |a,—L| <e¢ Vn>N J[H

= Ja| < lan — L] +|L| < e+ L], Vn > N
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Boundedness of a Sequence

A sequence (ap)$2, is bounded above or bounded below or
bounded if the set S = {a1, a2, ...} is bounded above or bounded
below or bounded.

v

Examples

o Ifa, = n € N*, then the sequence (a,) is bounded above

1
n+1r
by M > 1 and bounded below by m < 0.
o If a, = cosnm = (—1)", n € N*, then M > 1 is an upper
bound for the sequence (a,) and m < —1 is an lower bound
for the sequence (ap).

Every convergent sequence is bounded.

limpocan=L = Ve>0,dAN € Ns.t. |a,—L| <e¢ Vn>N J[H

= |an| < |an— L]+ |L| < e+ |L|, YVn > N = done!

Jiwen He, University of Houston
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Boundedness of a Sequence

A sequence (a,)%°, is bounded above or bounded below or
bounded if the set S = {a1, a2, ...} is bounded above or bounded
below or bounded.

o If a, = ﬁ n € N*, then the sequence (a,) is bounded above
by M > 1 and bounded below by m < 0.

o If a, = cosnm = (—1)", n € N*, then M > 1 is an upper
bound for the sequence (a,) and m < —1 is an lower bound
for the sequence (ap).

Every convergent sequence is bounded.

Every unbounded sequence is divergent.

Jiwen He, University of Houston
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@ A sequence (ap)%%, is increasing if a, < ap4+1 for all n € N*.
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@ A sequence (ap) is decreasing if a, > ap41 for all n € N*.
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@ A bounded, increasing sequence converges to its lub;

@ A sequence (ap) is increasing if a, < apy1 for all n € N*.

@ A sequence (ap) is decreasing if a, > ap41 for all n € N*.

@ a bounded, decreasing sequence converges to its glb.

v
Examples

o Ifa,= n € N*, then (a,) is decreasing, bounded, and
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n+1"
limp— o0 @an = inf(a,) = 0.
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Monotonic Sequence

00
n=1
00

n=1

@ A bounded, increasing sequence converges to its lub;

@ A sequence (ap) is increasing if a, < apy1 for all n € N*.

@ A sequence (ap) is decreasing if a, > ap41 for all n € N*.

@ a bounded, decreasing sequence converges to its glb.

v
Examples

o If a, = ﬁ n € N*, then (a,) is decreasing, bounded, and
H = _ an+1 __ 1 +1 _ Jrl
limp—oo an = inf(ap) = 0. < M= s = Z+2 <1
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Monotonic Sequence

o0

o0, is increasing if a, < ap41 for all n € N*.

@ A sequence (ap)

@ A sequence (ap)%°, is decreasing if a, > ap41 for all n € N*.

v
Theorem

@ A bounded, increasing sequence converges to its lub;

@ a bounded, decreasing sequence converges to its glb.

v
Examples

ﬁ, n € N*, then (a,) is decreasing, bounded, and
limp—oo an = inf(a,) = 0. < ag—:l = ni2 "Tl = Zié <1
o If a, = n?, n € N*, then (an) is increasing, but unbounded

above, therefore is divergent.
P

o If a, =

Jiwen He, University of Houston
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L PRt ek Bt T S
3
[ ]
Ll e
2
(11 LIZ {13 416
I 4 Lol 0L sl N N R R N
0 1 2 34 1 1 2 3 4 5 6 7 n
- 3 4 5

Let a, = n e N*,

_n_
n+1’

oo - 2
o (an) is increasing « 2ztl = ol nil - pg2ndl o g

an n-+2 n n2+2n
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— n *
Let an = 79, n € N*.
o o 5 2
o (ap) is increasing < 2t = Zié cotl = % > 1
@ The sequence displays as % % %, 19090,
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— n *
Letan— n+11 nEN o
o (ap) is increasing « 22 — 241 ntl —
n
@ The sequence displays as % % %, .

= sup(a,) =1 and inf(a,) = 5

n2+2n
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Example

e © ©
3
[ ]
Ll e
(11 412{13 416
I & PP [T N N B
0 1 2 34 1 [ 1 2 3 4 5 6
- 3 4 5

— n *
Letan— n+11 nEN o
o (ap) is increasing « 22 — 241 ntl —
n
@ The sequence displays as % % %, .

= sup(a,) =1 and inf(a,) = 5

= lim a, =sup(a,) = 1.
n—oo

n2+2n

n4+2n+1

>1

Jiwen He, University of Houston
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[ ]
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2
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2o o Letanzz—:withn:n(n—l)~~-1.
[ ]
1_
ag =3 °
L1 L 2 ¢ o
1 2 3 4 5 6 n
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2o e
[ ]
1_
2
-
L1 L 2 ¢ o
1 2 3 4 5 6 n
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Sequences

Let a, = 2—: with n=n

@ (ap) is decreasing

(n—1)---1.
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Letanzz—:with n=n(n—1)---1.

@ (ap) is decreasing

2n+1 n 2
= — = <1
an (n+1)2" n+1

dn+l
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Jiwen He, University of Houston

Let a, = 2 with n=n(n—1)---1.

n

@ (ap) is decreasing
ani1 20t 2

= — = <1
an (n+1)2" n+1

@ sup(a,) =2 and inf(a,) =0
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Jiwen He, University of Houston

Let a, = 2—: with n=n(n—1)---1.
@ (ap) is decreasing

ant1 2" n 2 <1

an  (n+1)20  n+1
@ sup(a,) =2 and inf(a,) =0

= lim a, =inf(a,) =0.

n—oo
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Let a, = 5.
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Let a, = 5.

o (an) is decreasing
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o (an) is decreasing

< Let f(x) = X.

ex

Jiwen He, University of Houston



Real Numbers Sequences

Example

Let a, = 5.

o (an) is decreasing

Jiwen He, University of Houston



Real Numbers Sequences

Example

Let a, = 5.

o (an) is decreasing

< Let f(x) = X.

ex

— xe 1—x

f(x) = = 0
(X) e2x eX <

o sup(a,) = % and inf(a,) = 0.
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Example

Let a, = 5.

o (an) is decreasing

< Let f(x)=X%

ex-

— xe 1—x

F(x) = - 0
x (X) e2X eX <

o sup(a,) = % and inf(a,) = 0.

= lim a, =inf(a,) =0.

Jiwen He, University of Houston
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1
Leta,=nn, n=1,2,...

@ (ap) is decreasing for n > 3

Let f(X) — 5 /x = e(l/x)lnx.

Jiwen He, University of Houston



Real Numbers Sequences

Example

1
Leta,=nn, n=1,2,...

@ (ap) is decreasing for n > 3

Let f(X) — 5 /x = e(l/x)lnx.

f/(x )—e(l/x InX((l/x)lnx) <0
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Example

1
Leta,=nn, n=1,2,...

@ (ap) is decreasing for n > 3

Let f(X) — 5 /x = e(l/x)lnx.

f/(x )—e(l/x InX((l/x)lnx) <0

e inf(a,) =1
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1
Leta,=nn, n=1,2,...

@ (ap) is decreasing for n > 3
Let f(X) — 5 /x = e(l/x)lnx.
f'(x) = eM)INx((1/x)Inx)" < 0
e inf(a,) =1

= lim a, =inf(a,) = 1.

n—oo
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