## Lecture 17

#### Section 10.1 Least Upper Bound Axiom Section 10.2 Sequences of Real Numbers

#### Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432





### Basic Properties of $\mathbb{R}$ : $\mathbb{R}$ being Ordered

#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots, \} = \{\text{integers}\}$
- $\mathbb{Q} = \{ rac{p}{q} : p,q \in \mathbb{Z}, q \neq 0 \} = \{ ext{rational numbers} \}$

•  $\mathbb{R} = \{$ real numbers $\} = \mathbb{Q} \cup \{$ irrational numbers  $(\pi, \sqrt{2}, \ldots)\}$ 

#### $\mathbb R$ is An Ordered Field

- $x \leq y$  and  $y \leq z \Rightarrow x \leq z$ .
- $x \le y$  and  $y \le x$   $\Leftrightarrow$  x = y.
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y \text{ or } y \leq x.$
- $x \leq y$  and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .
- $x \ge 0$  and  $y \ge 0 \implies xy \ge 0$ .



#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ integers \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$

•  $\mathbb{R} = \{ ext{real numbers}\} = \mathbb{Q} \cup \{ ext{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$ 

### $\mathbb{R}$ is An Ordered Field

- $x \le y$  and  $y \le z \implies x \le z$ .
- $x \le y$  and  $y \le x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \Rightarrow x \leq y \text{ or } y \leq x.$
- $x \leq y$  and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .
- $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .



(日) (同) (三) (三)

#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ \text{integers} \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$

•  $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$ 

#### $\mathbb R$ is An Ordered Field

- $x \le y$  and  $y \le z \Rightarrow x \le z$ .
- $x \leq y$  and  $y \leq x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y \text{ or } y \leq x.$
- $x \le y$  and  $z \in \mathbb{R} \implies x+z \le y+z$ .
- $x \ge 0$  and  $y \ge 0 \implies xy \ge 0$ .



#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ \text{integers} \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$
- $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$

#### ${\mathbb R}$ is An Ordered Field

- $x \le y$  and  $y \le z \implies x \le z$ .
- $x \le y$  and  $y \le x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y \text{ or } y \leq x.$
- $x \le y$  and  $z \in \mathbb{R} \quad \Rightarrow \quad x + z \le y + z$ .
- $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .



#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ \text{integers} \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$
- $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$

#### ${\mathbb R}$ is An Ordered Field

• 
$$x \leq y$$
 and  $y \leq z \Rightarrow x \leq z$ .

- $x \leq y$  and  $y \leq x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \Rightarrow x \leq y \text{ or } y \leq x.$
- $x \le y$  and  $z \in \mathbb{R} \implies x + z \le y + z$ .
- $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .



#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ \text{integers} \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$
- $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$

#### ${\mathbb R}$ is An Ordered Field

• 
$$x \leq y$$
 and  $y \leq z \Rightarrow x \leq z$ .

- $x \leq y$  and  $y \leq x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y \text{ or } y \leq x.$
- $x \leq y$  and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .
- $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .



#### Classification

- $\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$
- $\mathbb{Z} = \{ \dots, -2, -1, 0, 1, 2, \dots, \} = \{ \text{integers} \}$
- $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$
- $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$

#### ${\mathbb R}$ is An Ordered Field

• 
$$x \leq y$$
 and  $y \leq z \Rightarrow x \leq z$ .

- $x \leq y$  and  $y \leq x \quad \Leftrightarrow \quad x = y$ .
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y \text{ or } y \leq x.$
- $x \leq y$  and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .
- $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .



- 20

#### Classification

• 
$$\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$$

• 
$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots, \} = \{\text{integers}\}$$

•  $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$ 

•  $\mathbb{R} = \{\text{real numbers}\} = \mathbb{Q} \cup \{\text{irrational numbers } (\pi, \sqrt{2}, \ldots)\}$ 

#### ${\mathbb R}$ is An Ordered Field

• 
$$x \leq y$$
 and  $y \leq z \Rightarrow x \leq z$ .

• 
$$x \leq y$$
 and  $y \leq x \quad \Leftrightarrow \quad x = y$ .

• 
$$\forall x, y \in \mathbb{R} \Rightarrow x \leq y \text{ or } y \leq x.$$

• 
$$x \leq y$$
 and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .

•  $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .

イロト イ団ト イヨト イヨト

#### Classification

• 
$$\mathbb{N} = \{0, 1, 2, \ldots\} = \{\text{natural numbers}\}$$

• 
$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots, \} = \{\text{integers}\}$$

•  $\mathbb{Q} = \{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \} = \{ \text{rational numbers} \}$ 

• 
$$\mathbb{R} = \{$$
real numbers $\} = \mathbb{Q} \cup \{$ irrational numbers  $(\pi, \sqrt{2}, \ldots)\}$ 

#### ${\mathbb R}$ is An Ordered Field

• 
$$x \leq y$$
 and  $y \leq z \Rightarrow x \leq z$ .

• 
$$x \leq y$$
 and  $y \leq x \quad \Leftrightarrow \quad x = y$ .

• 
$$\forall x, y \in \mathbb{R} \Rightarrow x \leq y \text{ or } y \leq x.$$

• 
$$x \leq y$$
 and  $z \in \mathbb{R} \Rightarrow x + z \leq y + z$ .

•  $x \ge 0$  and  $y \ge 0 \Rightarrow xy \ge 0$ .

- 4 同 6 4 日 6 4 日 6

Ŀ

Real Numbers Sequences Review LUB

### Archimedean Property and Dedekind Cut Axiom

#### Archimedean Property

#### Dedekind Cut Axiom

#### Least Upper Bound Theorem

Jiwen He, University of Houston

冉

Real Numbers Sequences Review LUB

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let E and F be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E$  and  $z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb R$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17



H

Real Numbers Sequences Review LUB

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let *E* and *F* be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E$  and  $z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb R$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17



坍

Real Numbers Sequences Review LUB

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let *E* and *F* be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E \quad \text{and} \quad z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb R$  with an upper bound has a least upper bound (also called supremum)



Math 1432 - Section 26626, Lecture 17

坍

Real Numbers Sequences Review LUB

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let *E* and *F* be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset$ ;
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E \qquad \text{and} \qquad z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008 3

屮

Real Numbers Sequences

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let E and F be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \le z, \quad \forall x \in E \qquad \text{and} \qquad z \le y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008 3

旳

Real Numbers Sequences

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let E and F be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E \qquad \text{and} \qquad z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

Real Numbers Sequences

#### Archimedean Property

$$\forall x > 0, \forall y > 0, \exists n \in \mathbb{N} \text{ such that } nx > y.$$

#### Dedekind Cut Axiom

Let E and F be two nonempty subsets of  $\mathbb{R}$  such that

- $E \cup F = \mathbb{R};$
- $E \cap F = \emptyset;$
- $\forall x \in E, \forall y \in F$ , we have  $x \leq y$ .

Then,  $\exists z \in \mathbb{R}$  such that

 $x \leq z, \quad \forall x \in E \qquad \text{and} \qquad z \leq y, \quad \forall y \in F.$ 

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

Jiwen He, University of Houston

# Real NumbersSequencesReviewLUBBasic Properties of $\mathbb{R}$ :Least Upper Bound Property

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S;
   m is called an lower bound for S.

• S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum)

#### Proof.

Let  $F = \{ upper bounds for S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\Rightarrow \exists b \in \mathbb{R}$  such that  $x \leq b$ ,  $\forall x \in E$  and  $b \leq y$ .  $\forall y \in F$ : *b* is also an upper bound of  $S \implies b$  is the lub of S.



#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S;
   m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ upper bounds for S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\Rightarrow \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y$ .  $\forall x \in E$ : *b* is also an upper bound of  $S \implies b$  is the lub of S.

5000

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
 M is called an upper bound for S.

Review LUB

- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S;
   m is called an lower bound for S.
- *S* is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ upper bounds for S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\Rightarrow \exists b \in \mathbb{R}$  such that  $x \leq b$ ,  $\forall x \in E$  and  $b \leq y$  $\forall y \in E; b$  is also an upper bound of  $S \implies b$  is the lub of S



Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- *S* is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ upper bounds for S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\Rightarrow \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y, \forall y \in F; b$  is also an upper bound of  $S \Rightarrow b$  is the lub of S.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ upper bounds for S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y$ ,  $\forall y \in F; b$  is also an upper bound of  $S \implies b$  is the lub of S.



Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- *S* is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ \text{upper bounds for } S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y$ ,  $\forall y \in F$ ; b is also an upper bound of  $S \implies b$  is the lub of S.

Jiwen He, University of Houston

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{ \text{upper bounds for } S \}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y$ ,  $\forall y \in F$ ; b is also an upper bound of  $S \implies b$  is the lub of S

別

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{\text{upper bounds for } S\}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y, \forall y \in F$ ; b is also an upper bound of  $S \implies b$  is the lub of S.

別

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{\text{upper bounds for } S\}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y, \forall y \in F$ ; b is also an upper bound of  $S \implies b$  is the lub of S.



/ 16

町

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{\text{upper bounds for } S\}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y, \forall y \in F$ ; *b* is also an upper bound of  $S \implies b$  is the lub of *S*.



町

Real Numbers Sequences

#### Definition

Let S be a nonempty subset S of  $\mathbb{R}$ .

- S is bounded above if ∃M ∈ ℝ such that x ≤ M for all x ∈ S;
   M is called an upper bound for S.
- S is bounded below if ∃m ∈ ℝ such that x ≥ m for all x ∈ S; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

#### Least Upper Bound Theorem

Every nonempty subset S of  $\mathbb{R}$  with an upper bound has a least upper bound (also called supremum).

#### Proof.

Let  $F = \{\text{upper bounds for } S\}$  and  $E = \mathbb{R} \setminus E \implies (E, F)$  is a Dedekind cut  $\implies \exists b \in \mathbb{R}$  such that  $x \leq b, \forall x \in E$  and  $b \leq y, \forall y \in F$ ; *b* is also an upper bound of  $S \implies b$  is the lub of *S*.



/ 16

屮





Jiwen He, University of Houston

1ath 1432 – Section 26626, Lecture 17

March 11, 2008



Jiwen He, University of Houston

/lath 1432 – Section 26626, Lecture 17

March 11, 2008

### Real Numbers Sequences Supremum or Infimum of a Set S Definition Let S be a nonempty subset of $\mathbb{R}$ with an upper bound. We denote by $\sup(S)$ or $\lim(S)$ the supremum or least upper bound of S. Theorem Let $M = \sup(S)$ . Then • x < M. $\forall x \in S$ : $M - \epsilon$ M• $\forall \epsilon > 0$ , $(M - \epsilon, M] \cap S \neq \emptyset$ Definition Theorem

m  $m + \varepsilon$ 

#### Real Numbers Sequences Supremum or Infimum of a Set S

#### Definition

Let S be a nonempty subset of  $\mathbb{R}$  with an upper bound. We denote by  $\sup(S)$  or  $\lim(S)$  the supremum or least upper bound of S.



#### Definition





#### Theorem

Let 
$$m = \inf(S)$$
. Then

### Real Numbers Sequences Supremum or Infimum of a Set S Definition Let S be a nonempty subset of $\mathbb{R}$ with an upper bound. We denote by $\sup(S)$ or $\operatorname{lub}(S)$ the supremum or least upper bound of S. Theorem

M



et 
$$M = \sup(S)$$
. Then

• 
$$x \leq M$$
,  $\forall x \in S$ ;

• 
$$\forall \epsilon > 0$$
,  $(M - \epsilon, M] \cap S \neq \emptyset$ 

#### Definition

Let S be a nonempty subset of  $\mathbb{R}$  with a lower bound. We denote by inf(S) or glb(S) the infimum or greatest lower bound of S.

#### Theorem





### Real Numbers Sequences Supremum or Infimum of a Set S Definition Let S be a nonempty subset of $\mathbb{R}$ with an upper bound. We denote by $\sup(S)$ or $\lim(S)$ the supremum or least upper bound of S.



#### Theorem

et 
$$M = \sup(S)$$
. Then

• 
$$x \leq M$$
,  $\forall x \in S$ ;

• 
$$\forall \epsilon > 0$$
,  $(M - \epsilon, M] \cap S \neq \emptyset$ 

#### Definition

Let S be a nonempty subset of  $\mathbb{R}$  with a lower bound. We denote by inf(S) or glb(S) the infimum or greatest lower bound of S.

Theorem



Let 
$$m = \inf(S)$$
. Then

# Real Numbers Sequences Review LUB Supremum or Infimum of a Set S Definition Let S be a nonempty subset of $\mathbb{R}$ with an upper bound. We denote by sup(S) or lub(S) the supremum or least upper bound of S.



#### Definition

Let S be a nonempty subset of  $\mathbb{R}$  with a lower bound. We denote by  $\inf(S)$  or glb(S) the infimum or greatest lower bound of S.



#### Theorem

Let 
$$m = \inf(S)$$
. Then

• 
$$x \ge m$$
,  $\forall x \in S$ ;

# Real NumbersSequencesReviewLUBSupremum or Infimum of a Set SDefinitionLet S be a nonempty subset of $\mathbb{R}$ with an upper bound. We denote

by sup(S) or lub(S) the supremum or least upper bound of S.



#### Definition

Let S be a nonempty subset of  $\mathbb{R}$  with a lower bound. We denote by  $\inf(S)$  or glb(S) the infimum or greatest lower bound of S.

 $m \qquad m + \varepsilon$ 

#### Theorem

Let 
$$m = \inf(S)$$
. Then

• 
$$x \ge m$$
,  $\forall x \in S$ ;

• 
$$\forall \epsilon > 0, \quad [m, m + \epsilon] \cap S \neq \emptyset$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 1

# Examples: Supremum or Infimum of a Set S

Real Numbers Sequences Review LUB

#### Examples

- Every finite subset of  $\mathbb R$  has both upper and lower bounds:  $\sup\{1,2,3\}=3, \ \inf\{1,2,3\}=1.$
- If a < b, then
  - $b = \sup[a, b] = \sup[a, b)$  and  $a = \inf[a, b] = \inf(a, b]$ .
- If  $S = \{q \in \mathbb{Q} : e < q < \pi\}$ , then inf S = e, sup  $S = \pi$ .
- If  $S=\{x\in\mathbb{R}:x^2<\pi\}$ , then inf  $S=-\sqrt{3}$ , sup  $S=\sqrt{3}$

• If  $S = \{x \in \mathbb{Q} : x^2 < \pi\}$ , then inf  $S = -\sqrt{3}$ , sup  $S = \sqrt{3}$ .

#### Theorem

The notions of infimum and supremum are dual in the sense that  $\inf(S) = -\sup(-S)$ 

where  $-S = \{-s | s \in S\}$ .

呐

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

A (10) > A (10) > A

5 / 16

# Examples: Supremum or Infimum of a Set S

Real Numbers Sequences Review LUB

#### Examples

- Every finite subset of  $\mathbb{R}$  has both upper and lower bounds:  $\sup\{1,2,3\} = 3$ ,  $\inf\{1,2,3\} = 1$ .
- If *a* < *b*, then
  - $b = \sup[a, b] = \sup[a, b)$  and  $a = \inf[a, b] = \inf(a, b]$ .

• If 
$$S = \{q \in \mathbb{Q} : e < q < \pi\}$$
, then inf  $S = e$ , sup  $S = \pi$ .

• If  $S=\{x\in\mathbb{R}:x^2<\pi\}$ , then inf  $S=-\sqrt{3}$ , sup  $S=\sqrt{3}$ 

• If  $S = \{x \in \mathbb{Q} : x^2 < \pi\}$ , then inf  $S = -\sqrt{3}$ , sup  $S = \sqrt{3}$ .

#### Theorem

The notions of infimum and supremum are dual in the sense that  $\inf(S) = -\sup(-S)$ 

*where*  $-S = \{-s | s \in S\}$ *.* 

Ħ

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

A (10) > A (10) > A

5 / 16

# Examples: Supremum or Infimum of a Set S

#### Examples

- Every finite subset of  $\mathbb{R}$  has both upper and lower bounds:  $\sup\{1,2,3\} = 3$ ,  $\inf\{1,2,3\} = 1$ .
- If a < b, then</li>
   b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].

Real Numbers Sequences Review LUB

- If  $S = \{q \in \mathbb{Q} : e < q < \pi\}$ , then inf S = e, sup  $S = \pi$ .
- If  $S = \{x \in \mathbb{R} : x < \pi\}$ , then  $\inf S = -\sqrt{3}$ , sup  $S = \sqrt{3}$ . • If  $S = \{x \in \mathbb{O} : x^2 < \pi\}$  then  $\inf S = -\sqrt{3}$ , sup  $S = \sqrt{3}$ .

#### Theorem

The notions of infimum and supremum are dual in the sense that  $\inf(S) = -\sup(-S)$ 

where  $-S = \{-s | s \in S\}$ .

冉

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

< /₽ > < ∃ >

#### Examples

- Every finite subset of  $\mathbb R$  has both upper and lower bounds:  $sup\{1,2,3\}=3, \ inf\{1,2,3\}=1.$
- If a < b, then  $b = \sup[a, b] = \sup[a, b)$  and  $a = \inf[a, b] = \inf(a, b]$ .

• If 
$$S = \{q \in \mathbb{Q} : e < q < \pi\}$$
, then inf  $S = e$ , sup  $S = \pi$ .

• If 
$$S=\{x\in\mathbb{R}:x^2<\pi\}$$
, then inf  $S=-\sqrt{3}$ , sup  $S=\sqrt{3}$ .

• If  $S=\{x\in\mathbb{Q}:x^2<\pi\}$ , then inf  $S=-\sqrt{3}$ , sup  $S=\sqrt{3}$ .

#### Theorem

The notions of infimum and supremum are dual in the sense that

$$\inf(S) = -\sup(-S)$$

where  $-S = \{-s | s \in S\}$ .

畃

#### Examples

- Every finite subset of  $\mathbb{R}$  has both upper and lower bounds: sup $\{1,2,3\} = 3$ , inf $\{1,2,3\} = 1$ .
- If a < b, then b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].
  If S = {q ∈ Q : e < q < π}, then inf S = e, sup S = π.</li>
  If S = {x ∈ ℝ : x<sup>2</sup> < π}, then inf S = -√3, sup S = √3.</li>
- If  $S=\{x\in\mathbb{Q}:x^2<\pi\}$ , then inf  $S=-\sqrt{3}$ , sup  $S=\sqrt{3}$

#### Theorem

The notions of infimum and supremum are dual in the sense that

$$\inf(S) = -\sup(-S)$$

where  $-S = \{-s | s \in S\}$ .

畃

#### Examples

- Every finite subset of ℝ has both upper and lower bounds: sup{1,2,3} = 3, inf{1,2,3} = 1.
- If a < b, then b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].
  If S = {q ∈ Q : e < q < π}, then inf S = e, sup S = π.</li>
  If S = {x ∈ ℝ : x<sup>2</sup> < π}, then inf S = -√3, sup S = √3.</li>

• If 
$$S = \{x \in \mathbb{Q} : x^2 < \pi\}$$
, then inf  $S = -\sqrt{3}$ , sup  $S = \sqrt{3}$ .

#### Theorem

The notions of infimum and supremum are dual in the sense that

$$\inf(S) = -\sup(-S)$$

where  $-S = \{-s | s \in S\}$ .

#### Examples

- Every finite subset of ℝ has both upper and lower bounds: sup{1,2,3} = 3, inf{1,2,3} = 1.
- If a < b, then b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].
  If S = {q ∈ Q : e < q < π}, then inf S = e, sup S = π.</li>
  If S = {x ∈ ℝ : x<sup>2</sup> < π}, then inf S = -√3, sup S = √3.</li>
  If S = {x ∈ Q : x<sup>2</sup> < π}, then inf S = -√3, sup S = √3.</li>

#### Theorem

The notions of infimum and supremum are dual in the sense that

$$\inf(S) = -\sup(-S)$$

where  $-S = \{-s | s \in S\}$ .

Jiwen He, University of Houston

March 11, 2008

#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} 
i n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

- $a_n = \frac{1}{n}, n \in \mathbb{N}^*$ , is the sequence 1,  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;
- $a_n = \frac{n}{n+1}$ ,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...
- ullet  $a_n=n^2,\;n\in\mathbb{N}^*$ , is the sequence 1, 4, 9, 16, .
- $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , is the sequence -



#### Real Numbers Sequences

# Sequences: Definition

#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}$$
,  $n \in \mathbb{N}^*$ , is the sequence 1,  $\frac{1}{2}$ ,  $\frac{1}{3}$ ,  $\frac{1}{4}$ , ...;

• 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...

•  $a_n=n^2,~n\in\mathbb{N}^*,$  is the sequence 1, 4, 9, 16, .

```
ullet a_n=\cos n\pi=(-1)^n, n\in\mathbb{N}^*, is the sequence -
```

冉

#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}, n \in \mathbb{N}^*$$
, is the sequence 1,  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;

• 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , . .

•  $a_n=n^2,\ n\in\mathbb{N}^*,$  is the sequence 1, 4, 9, 16,  $\ldots$ 

ullet  $a_n=\cos n\pi=(-1)^n$ ,  $n\in\mathbb{N}^*$ , is the sequence -



#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}, n \in \mathbb{N}^*$$
, is the sequence 1,  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;

• 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...

• 
$$a_n=n^2$$
,  $n\in\mathbb{N}^*$ , is the sequence 1, 4, 9, 16,  $\dots$ 

ullet  $a_n=\cos n\pi=(-1)^n,~n\in\mathbb{N}^*,$  is the sequence -1,~1,~-1,~.

#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}, n \in \mathbb{N}^*$$
, is the sequence 1,  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;

• 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...

•  $a_n=n^2$ ,  $n\in\mathbb{N}^*$ , is the sequence 1, 4, 9, 16,  $\ldots$ 

•  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , is the sequence -1, 1, -1,  $\ldots$ 

#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}, n \in \mathbb{N}^*$$
, is the sequence 1,  $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;

• 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ ,  $\frac{4}{5}$ , ...

• 
$$a_n = n^2$$
,  $n \in \mathbb{N}^*$ , is the sequence 1, 4, 9, 16, ...;

•  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , is the sequence  $-1, 1, -1, \ldots$ 



#### Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers  $\mathbb{N}^*$ :

$$\mathbb{N}^* = \{1, 2, \ldots\} \ni n \mapsto a_n = f(n) \in \mathbb{R}.$$

where the  $n^{\text{th}}$  term f(n) is denoted by  $a_n$ .

The sequence  $a_1, a_2, \ldots$ , is denoted by  $(a_n)_{n=1}^{\infty}$  or  $(a_n)$ .

#### Examples

• 
$$a_n = \frac{1}{n}, n \in \mathbb{N}^*$$
, is the sequence  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$ ;  
•  $a_n = \frac{n}{n+1}, n \in \mathbb{N}^*$ , is the sequence  $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$ ;  
•  $a_n = n^2, n \in \mathbb{N}^*$ , is the sequence  $1, 4, 9, 16, \ldots$ ;  
•  $a_n = \cos n\pi = (-1)^n, n \in \mathbb{N}^*$ , is the sequence  $-1, 1, -1, \ldots$ .

Real Numbers Sequences

### Limit of a Sequence

#### Definition

Examples



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

3

イロト イポト イヨト イヨト

Real Numbers Sequences

# Limit of a Sequence

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

 $\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \text{ such that } |a_n - L| < \epsilon, \forall n > N.$ 

#### Examples

if

• If 
$$a_n = \frac{1}{n+1}$$
,  $n \in \mathbb{N}^*$ , then  $\lim_{n \to \infty} a_n = 0$ .

 $\frac{1}{N} < \epsilon$ . Then, if n > N, we have  $0 < \frac{1}{n+1} < \frac{1}{N+1}$ 

• If  $a_n=rac{n}{n+1}$ ,  $n\in\mathbb{N}^*$ , then  $\lim_{n o\infty}a_n=1$ 

呐

Jiwen He, University of Houston

イロト イポト イヨト イヨト

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

if

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \text{ such that } |a_n - L| < \epsilon, \forall n > N$$

#### Examples

• If 
$$a_n = \frac{1}{n+1}$$
,  $n \in \mathbb{N}^*$ , then  $\lim_{n \to \infty} a_n = 0$ .  
For any  $\epsilon > 0$  given, choose  $N > 0$  such that  $\epsilon N > 1$ ,  
 $\frac{1}{n} < \epsilon$ . Then, if  $n > N$ , we have  $0 < \frac{1}{n+1} < \frac{1}{n} < \epsilon$ .

• If 
$$a_n = rac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ , then  $\lim_{n \to \infty} a_n = 1$ 



Jiwen He, University of Houston

э

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

if

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \text{ such that } |a_n - L| < \epsilon, \forall n > N$$

#### Examples

If a<sub>n</sub> = 1/(n+1), n ∈ N\*, then lim<sub>n→∞</sub> a<sub>n</sub> = 0. For any ε > 0 given, choose N > 0 such that εN > 1, i.e., 1/N < ε. Then, if n > N, we have 0 < 1/(n+1) < 1/(N+1) < ε.</li>
If a<sub>n</sub> = n/(n+1), n ∈ N\*, then lim<sub>n→∞</sub> a<sub>n</sub> = 1.



- 4 週 ト - 4 三 ト - 4 三 ト

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

if

$$orall \epsilon > 0, \quad \exists N \in \mathbb{N} ext{ such that } |a_n - L| < \epsilon, orall n > N.$$

#### Examples

3

- (目) - (日) - (日)

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

if

$$\forall \epsilon > 0, \quad \exists N \in \mathbb{N} \text{ such that } |a_n - L| < \epsilon, \forall n > N.$$

#### Examples

(A) < (A)

#### Definition

Let  $(a_n)_{n=1}^{\infty}$  be a sequence of real numbers. A real number L is a limit of  $(a_n)_{n=1}^{\infty}$ , denoted by

$$L=\lim_{n\to\infty}a_n,$$

if

$$orall \epsilon > 0, \quad \exists N \in \mathbb{N} ext{ such that } |a_n - L| < \epsilon, orall n > N.$$

#### Examples

• If 
$$a_n = \frac{1}{n+1}$$
,  $n \in \mathbb{N}^*$ , then  $\lim_{n \to \infty} a_n = 0$ .  
For any  $\epsilon > 0$  given, choose  $N > 0$  such that  $\epsilon N > 1$ , i.e.,  
 $\frac{1}{N} < \epsilon$ . Then, if  $n > N$ , we have  $0 < \frac{1}{n+1} < \frac{1}{N+1} < \epsilon$ .  
• If  $a_n = \frac{n}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $\lim_{n \to \infty} a_n = 1$ .  
For any  $\epsilon > 0$  given, choose  $N > 0$  such that  $\epsilon N > 1$ , i.e.,  
 $\frac{1}{N} < \epsilon$ . Then, if  $n > N$ , we have  $0 < \left| \frac{n}{n+1} - 1 \right| = \frac{1}{n} < \frac{1}{N} < \epsilon$ .

3

(A) < (A)

Real Numbers Sequences

# Convergent Sequence



• A sequence that has a limit is said to be convergent.

• A sequence that has no limit is said to be divergent.

Uniqueness of Limit

If  $\lim_{n\to\infty} a_n = L$  and  $\lim_{n\to\infty} a_n = M$ , then L = M.

Proof.

 $\begin{aligned} \forall \epsilon > 0, \ \exists N > 0 \ \text{such that} \ |a_n - L| < \frac{\epsilon}{2} \ \text{and} \ |a_n - M| < \frac{\epsilon}{2}, \ \forall n > N, \\ \Rightarrow |L - M| \le |a_n - L| + |a_n - M| < \epsilon \quad \Rightarrow \quad L = M. \end{aligned}$ 

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.

**H** २२०

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

Real Numbers Sequences

# Convergent Sequence

#### Definition

• A sequence that has a limit is said to be convergent.

• A sequence that has no limit is said to be divergent.

#### Uniqueness of Limit

If  $\lim_{n\to\infty} a_n = L$  and  $\lim_{n\to\infty} a_n = M$ , then L = M.

#### Proof.



#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.



Math 1432 - Section 26626, Lecture 17

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

#### Uniqueness of Limit

If  $\lim_{n\to\infty} a_n = L$  and  $\lim_{n\to\infty} a_n = M$ , then L = M.

#### Proof.



#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.



Real Numbers Sequences

# Convergent Sequence

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

#### Uniqueness of Limit

If  $\lim_{n\to\infty} a_n = L$  and  $\lim_{n\to\infty} a_n = M$ , then L = M.

#### Proof.

 $\begin{aligned} \forall \epsilon > 0, \ \exists N > 0 \ \text{such that} \ |a_n - L| < \frac{\epsilon}{2} \ \text{and} \ |a_n - M| < \frac{\epsilon}{2}, \ \forall n > N. \\ \Rightarrow |L - M| \le |a_n - L| + |a_n - M| < \epsilon \quad \Rightarrow \quad L = M. \end{aligned}$ 

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.



#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

f 
$$\lim_{n\to\infty} a_n = L$$
 and  $\lim_{n\to\infty} a_n = M$ , then  $L = M$ 

Proof.

$$\begin{aligned} \forall \epsilon > 0, \ \exists N > 0 \ \text{such that} \ |a_n - L| < \frac{\epsilon}{2} \ \text{and} \ |a_n - M| < \frac{\epsilon}{2}, \ \forall n > N, \\ \Rightarrow \ |L - M| \le |a_n - L| + |a_n - M| < \epsilon \quad \Rightarrow \quad L = M. \end{aligned}$$

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.

in the interval  $(x - \frac{1}{2}, x + \frac{1}{2})$  has a length  $\frac{2}{2}$ 



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

#### Uniqueness of Limit

If 
$$\lim_{n o \infty} a_n = L$$
 and  $\lim_{n o \infty} a_n = M$ , then  $L = M$ 

#### Proof.

$$\begin{array}{l} \forall \epsilon > 0, \; \exists N > 0 \; \text{such that} \; |a_n - L| < \frac{\epsilon}{2} \; \text{and} \; |a_n - M| < \frac{\epsilon}{2}, \; \forall n > N. \\ \Rightarrow \; |L - M| \leq |a_n - L| + |a_n - M| < \epsilon \; \Rightarrow \; L = M. \end{array}$$

#### Example

- If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.
  - If  $\epsilon=rac{1}{3},$  then the interval  $(x-rac{1}{3},x+rac{1}{3})$  has a length  $rac{2}{3}$  tha
  - is <1;  $\forall x\in \mathbb{R},$  it can not contain 1 and -1 at the sam



#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

f 
$$\lim_{n\to\infty} a_n = L$$
 and  $\lim_{n\to\infty} a_n = M$ , then  $L = M$ 

Proof.

$$\begin{array}{l} \forall \epsilon > 0, \; \exists N > 0 \; \text{such that} \; |a_n - L| < \frac{\epsilon}{2} \; \text{and} \; |a_n - M| < \frac{\epsilon}{2}, \; \forall n > N. \\ \Rightarrow \; |L - M| \leq |a_n - L| + |a_n - M| < \epsilon \; \Rightarrow \; L = M. \end{array}$$

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.

If  $\epsilon = \frac{1}{3}$ , then the interval  $(x - \frac{1}{3}, x + \frac{1}{3})$  has a length  $\frac{2}{3}$  that is < 1;  $\forall x \in \mathbb{R}$ , it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that  $|a_n - x| < \frac{1}{3}$  if



畃

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

f 
$$\lim_{n\to\infty}a_n=L$$
 and  $\lim_{n\to\infty}a_n=M$ , then  $L=M$ 

Proof.

$$\begin{array}{l} \forall \epsilon > 0, \; \exists N > 0 \; \text{such that} \; |a_n - L| < \frac{\epsilon}{2} \; \text{and} \; |a_n - M| < \frac{\epsilon}{2}, \; \forall n > N. \\ \Rightarrow \; |L - M| \leq |a_n - L| + |a_n - M| < \epsilon \; \Rightarrow \; L = M. \end{array}$$

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is

divergent.

If  $\epsilon = \frac{1}{3}$ , then the interval  $(x - \frac{1}{3}, x + \frac{1}{3})$  has a length  $\frac{2}{3}$  that is < 1;  $\forall x \in \mathbb{R}$ , it can not contain 1 and -1 at the same time.

Jiwen He, University of Houston

畃

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

f 
$$\lim_{n\to\infty}a_n=L$$
 and  $\lim_{n\to\infty}a_n=M$ , then  $L=M$ 

Proof.

$$\begin{array}{l} \forall \epsilon > 0, \; \exists N > 0 \; \text{such that} \; |a_n - L| < \frac{\epsilon}{2} \; \text{and} \; |a_n - M| < \frac{\epsilon}{2}, \; \forall n > N. \\ \Rightarrow \; |L - M| \leq |a_n - L| + |a_n - M| < \epsilon \; \Rightarrow \; L = M. \end{array}$$

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.

If  $\epsilon = \frac{1}{3}$ , then the interval  $(x - \frac{1}{3}, x + \frac{1}{3})$  has a length  $\frac{2}{3}$  that is < 1;  $\forall x \in \mathbb{R}$ , it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that  $|a_n - x| < \frac{1}{3}$  if

Jiwen He, University of Houston

呐

#### Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

#### Uniqueness of Limit

If 
$$\lim_{n o \infty} a_n = L$$
 and  $\lim_{n o \infty} a_n = M$ , then  $L = M$ 

#### Proof.

$$\begin{array}{l} \forall \epsilon > 0, \; \exists N > 0 \; \text{such that} \; |a_n - L| < \frac{\epsilon}{2} \; \text{and} \; |a_n - M| < \frac{\epsilon}{2}, \; \forall n > N. \\ \Rightarrow \; |L - M| \leq |a_n - L| + |a_n - M| < \epsilon \; \Rightarrow \; L = M. \end{array}$$

#### Example

• If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , the sequence  $(a_n)$  is divergent.

If  $\epsilon = \frac{1}{3}$ , then the interval  $(x - \frac{1}{3}, x + \frac{1}{3})$  has a length  $\frac{2}{3}$  that is < 1;  $\forall x \in \mathbb{R}$ , it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that  $|a_n - x| < \frac{1}{3}$  if

## Boundedness of a Sequence

#### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
  - If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , then  $M \ge 1$  is an upper bound for the sequence  $(a_n)$  and  $m \le -1$  is an lower bound for the sequence  $(a_n)$ .

#### Theorem

Every convergent sequence is bounded



## Boundedness of a Sequence

#### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
- If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , then  $M \ge 1$  is an upper bound for the sequence  $(a_n)$  and  $m \le -1$  is an lower bound for the sequence  $(a_n)$ .

#### Theorem

Every convergent sequence is bounded.



## Boundedness of a Sequence

#### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
- If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , then  $M \ge 1$  is an upper bound for the sequence  $(a_n)$  and  $m \le -1$  is an lower bound for the sequence  $(a_n)$ .

#### Theorem

Every convergent sequence is bounded.



#### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
- If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , then  $M \ge 1$  is an upper bound for the sequence  $(a_n)$  and  $m \le -1$  is an lower bound for the sequence  $(a_n)$ .

#### Theorem

Every convergent sequence is bounded.



#### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
- If  $a_n = \cos n\pi = (-1)^n$ ,  $n \in \mathbb{N}^*$ , then  $M \ge 1$  is an upper bound for the sequence  $(a_n)$  and  $m \le -1$  is an lower bound for the sequence  $(a_n)$ .

#### Theorem

Every convergent sequence is bounded.



## Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If a<sub>n</sub> = 1/n+1, n ∈ N\*, then the sequence (a<sub>n</sub>) is bounded above by M ≥ 1 and bounded below by m ≤ 0.
- If a<sub>n</sub> = cos nπ = (-1)<sup>n</sup>, n ∈ N\*, then M ≥ 1 is an upper bound for the sequence (a<sub>n</sub>) and m ≤ -1 is an lower bound for the sequence (a<sub>n</sub>).

#### Theorem

Every convergent sequence is bounded.



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

0 / 16

## Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If a<sub>n</sub> = 1/n+1, n ∈ N\*, then the sequence (a<sub>n</sub>) is bounded above by M ≥ 1 and bounded below by m ≤ 0.
- If a<sub>n</sub> = cos nπ = (-1)<sup>n</sup>, n ∈ N\*, then M ≥ 1 is an upper bound for the sequence (a<sub>n</sub>) and m ≤ -1 is an lower bound for the sequence (a<sub>n</sub>).

#### Theorem

Every convergent sequence is bounded.

$$\lim_{n\to\infty} a_n = L \Rightarrow \forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } |a_n - L| < \epsilon, \ \forall n > N$$



Math 1432 - Section 26626, Lecture 17

## Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

If a<sub>n</sub> = 1/n+1, n ∈ N\*, then the sequence (a<sub>n</sub>) is bounded above by M ≥ 1 and bounded below by m ≤ 0.

 If a<sub>n</sub> = cos nπ = (-1)<sup>n</sup>, n ∈ N\*, then M ≥ 1 is an upper bound for the sequence (a<sub>n</sub>) and m ≤ -1 is an lower bound for the sequence (a<sub>n</sub>).

#### Theorem

Every convergent sequence is bounded.

$$\begin{split} \lim_{n \to \infty} a_n &= L \Rightarrow \forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } |a_n - L| < \epsilon, \ \forall n > N \\ \Rightarrow |a_n| &\leq |a_n - L| + |L| < \epsilon + |L|, \ \forall n > N \Rightarrow \text{ done!} \end{split}$$

Jiwen He, University of Houston

## Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If a<sub>n</sub> = 1/n+1, n ∈ N\*, then the sequence (a<sub>n</sub>) is bounded above by M ≥ 1 and bounded below by m ≤ 0.
- If a<sub>n</sub> = cos nπ = (-1)<sup>n</sup>, n ∈ N\*, then M ≥ 1 is an upper bound for the sequence (a<sub>n</sub>) and m ≤ -1 is an lower bound for the sequence (a<sub>n</sub>).

#### Theorem

Every convergent sequence is bounded.

$$\begin{split} \lim_{n \to \infty} a_n &= L \Rightarrow \forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s.t. } |a_n - L| < \epsilon, \ \forall n > N \\ \Rightarrow |a_n| &\leq |a_n - L| + |L| < \epsilon + |L|, \ \forall n > N \Rightarrow \text{ done!} \end{split}$$



## Boundedness of a Sequence

### Definition

A sequence  $(a_n)_{n=1}^{\infty}$  is bounded above or bounded below or bounded if the set  $S = \{a_1, a_2, \ldots\}$  is bounded above or bounded below or bounded.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then the sequence  $(a_n)$  is bounded above by  $M \ge 1$  and bounded below by  $m \le 0$ .
- If a<sub>n</sub> = cos nπ = (-1)<sup>n</sup>, n ∈ N\*, then M ≥ 1 is an upper bound for the sequence (a<sub>n</sub>) and m ≤ -1 is an lower bound for the sequence (a<sub>n</sub>).

#### Theorem

Every convergent sequence is bounded.

#### Theorem

Every unbounded sequence is divergent.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

March 11, 2008

10 / 16

## Definition

A sequence (a<sub>n</sub>)<sub>n=1</sub><sup>∞</sup> is increasing if a<sub>n</sub> ≤ a<sub>n+1</sub> for all n ∈ N\*.
A sequence (a<sub>n</sub>)<sub>n=1</sub><sup>∞</sup> is decreasing if a<sub>n</sub> ≥ a<sub>n+1</sub> for all n ∈ N\*.

#### Theorem

- A bounded, increasing sequence converges to its lub;
  - a bounded, decreasing sequence converges to its glb.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .
  - If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



A (10) < A (10) </p>

#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .
  - If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .
- If a<sub>n</sub> = n<sup>2</sup>, n ∈ N\*, then (a<sub>n</sub>) is increasing, but unbounded above, therefore is divergent.



#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

• A bounded, increasing sequence converges to its lub;

a bounded, decreasing sequence converges to its glb.

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .
- If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .  $\Rightarrow \frac{a_{n+1}}{a_n} = \frac{1}{n+2} \frac{n+1}{1} = \frac{n+1}{n+2} < 1$
- If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .  $\Leftrightarrow \frac{a_{n+1}}{a_n} = \frac{1}{n+2} \frac{n+1}{1} = \frac{n+1}{n+2} < 1$
- If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



(4) (日本)

#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

#### Examples

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .  $\Leftarrow \frac{a_{n+1}}{a_n} = \frac{1}{n+2} \frac{n+1}{1} = \frac{n+1}{n+2} < 1$
- If  $a_n = n^2$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is increasing, but unbounded above, therefore is divergent.



- 4 @ > - 4 @ > - 4 @ >

#### Definition

- A sequence  $(a_n)_{n=1}^{\infty}$  is increasing if  $a_n \leq a_{n+1}$  for all  $n \in \mathbb{N}^*$ .
- A sequence  $(a_n)_{n=1}^{\infty}$  is decreasing if  $a_n \ge a_{n+1}$  for all  $n \in \mathbb{N}^*$ .

#### Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

- If  $a_n = \frac{1}{n+1}$ ,  $n \in \mathbb{N}^*$ , then  $(a_n)$  is decreasing, bounded, and  $\lim_{n\to\infty} a_n = \inf(a_n) = 0$ .  $\Leftarrow \frac{a_{n+1}}{a_n} = \frac{1}{n+2}\frac{n+1}{1} = \frac{n+1}{n+2} < 1$
- If a<sub>n</sub> = n<sup>2</sup>, n ∈ N<sup>\*</sup>, then (a<sub>n</sub>) is increasing, but unbounded above, therefore is divergent.



## Example



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1

12 / 16

呐

## Example



- (a<sub>n</sub>) is increasing  $\leftarrow \frac{a_{n+1}}{a_n} = \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n} > 1$
- The sequence displays as  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...,  $\frac{99}{100}$ , ....

## $\Rightarrow \lim_{n \to \infty} a_n = \sup(a_n) = 1.$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 17

12 / 16

屮

## Example



• The sequence displays as  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...,  $\frac{99}{100}$ , ....

 $\Rightarrow \lim_{n \to \infty} a_n = \sup(a_n) = 1$ 

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 17

2 / 16

H

## Example



 $\Rightarrow \lim_{n \to \infty} a_n = \sup(a_n) = 1.$ 

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 17

## Example



• The sequence displays as  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...,  $\frac{99}{100}$ , ....  $\Rightarrow \sup(a_n) = 1$  and  $\inf(a_n) = \frac{1}{2}$ 

$$\Rightarrow \lim_{n\to\infty} a_n = \sup(a_n) = 1.$$

Jiwen He, University of Houston

## Example



Let 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ .

- (a<sub>n</sub>) is increasing  $\leftarrow \frac{a_{n+1}}{a_n} = \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n} > 1$
- The sequence displays as  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...,  $\frac{99}{100}$ , ....  $\Rightarrow \sup(a_n) = 1$  and  $\inf(a_n) = \frac{1}{2}$

$$\Rightarrow \lim_{n\to\infty}a_n=\sup(a_n)=1.$$

Jiwen He, University of Houston

## Example



Let 
$$a_n = \frac{n}{n+1}$$
,  $n \in \mathbb{N}^*$ .

- (a<sub>n</sub>) is increasing  $\leftarrow \frac{a_{n+1}}{a_n} = \frac{n+1}{n+2} \cdot \frac{n+1}{n} = \frac{n^2+2n+1}{n^2+2n} > 1$
- The sequence displays as  $\frac{1}{2}$ ,  $\frac{2}{3}$ ,  $\frac{3}{4}$ , ...,  $\frac{99}{100}$ , ....  $\Rightarrow \sup(a_n) = 1$  and  $\inf(a_n) = \frac{1}{2}$

$$\Rightarrow \lim_{n\to\infty}a_n=\sup(a_n)=1.$$



#### Example

Let  $a_n = \frac{2^n}{n}$  with  $n = n(n-1)\cdots 1$ •  $(a_n)$  is decreasing

•  $sup(a_n) = 2$  and  $inf(a_n) = 0$ 

$$\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 0.$$



Jiwen He, University of Houston



# Example Let $a_n = \frac{2^n}{n}$ with $n = n(n-1)\cdots 1$ .





| Example                                                                                     |
|---------------------------------------------------------------------------------------------|
| Let $a_n = \frac{2^n}{n}$ with $n = n(n-1)\cdots 1$ .                                       |
| • $(a_n)$ is decreasing                                                                     |
| $\Leftarrow  \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)} \frac{n}{2^n} = \frac{2}{n+1} < 1$ |
| • $sup(a_n) = 2$ and $inf(a_n) = 0$                                                         |
| $\Rightarrow \lim_{n\to\infty}a_n=\inf(a_n)=0.$                                             |

< 🗇 🕨 🔸



4

Jiwen He, University of Houston

-≣->



## Example Let $a_n = \frac{2^n}{n}$ with $n = n(n-1)\cdots 1$ . • $(a_n)$ is decreasing $\Leftarrow \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)2^n} = \frac{2}{n+1} < 1$ • $\sup(a_n) = 2$ and $\inf(a_n) = 0$ $\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 0$ .





# Example Let $a_n = \frac{2^n}{n}$ with $n = n(n-1)\cdots 1$ . • $(a_n)$ is decreasing $\Leftarrow \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)2^n} = \frac{2}{n+1} < 1$ • $\sup(a_n) = 2$ and $\inf(a_n) = 0$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

/Jarch 11, 2008



## Example Let $a_n = \frac{2^n}{n}$ with $n = n(n-1)\cdots 1$ . • $(a_n)$ is decreasing $\Leftarrow \frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)2^n} = \frac{2}{n+1} < 1$ • $\sup(a_n) = 2$ and $\inf(a_n) = 0$ $\lim a_n = \inf(a_n) = 0.$ $n \rightarrow \infty$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 1



## Example

Let 
$$a_n = \frac{n}{e^n}$$
.

$$\leftarrow \quad \text{Let } f(\mathbf{x}) = \underset{e}{\overset{\times}{\cdot}}.$$

• 
$$\sup(a_n) = \frac{1}{e}$$
 and  $\inf(a_n) = 0$ .

▲ 同 ▶ → ● 三

Jiwen He, University of Houston

э.



#### Example

Let 
$$a_n = \frac{n}{e^n}$$
.

•  $(a_n)$  is decreasing

▲ 同 ▶ → 三 ▶

Jiwen He, University of Houston

-



## Example

Let 
$$a_n = \frac{n}{e^n}$$
.

• (*a<sub>n</sub>*) is decreasing

$$\leftarrow \quad \text{Let } f(x) = \frac{x}{e^x}.$$

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{1 - x}{e^x} < 0$$

• 
$$\sup(a_n) = \frac{1}{e}$$
 and  $\inf(a_n) = 0$ .

A⊒ ► < 3

 $\lim_{n\to\infty}a_n=\inf(a_n)=0.$ 

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 17

larch 11, 2008 14

э



## Example

Let 
$$a_n = \frac{n}{e^n}$$
.

• (*a<sub>n</sub>*) is decreasing

$$\leftarrow \quad \text{Let } f(x) = \frac{x}{e^x}.$$

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{1 - x}{e^x} < 0$$

• 
$$sup(a_n) = \frac{1}{e}$$
 and  $inf(a_n) = 0$ .

A 🖓

2

$$\lim_{n\to\infty}a_n=\inf(a_n)=0.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 17



## Example

Let 
$$a_n = \frac{n}{e^n}$$
.

• (*a<sub>n</sub>*) is decreasing

$$\leftarrow \quad \text{Let } f(x) = \frac{x}{e^x}.$$

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{1 - x}{e^x} < 0$$

• 
$$\sup(a_n) = \frac{1}{e}$$
 and  $\inf(a_n) = 0$ .

A 🖓

$$\lim_{n\to\infty}a_n=\inf(a_n)=0.$$

Jiwen He, University of Houston

Nath 1432 – Section 26626, Lecture 17

1arch 11. 2008 14 /



## Example

Let 
$$a_n = \frac{n}{e^n}$$

• (*a<sub>n</sub>*) is decreasing

$$\leftarrow \quad \text{Let } f(x) = \frac{x}{e^x}.$$

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{1 - x}{e^x} < 0$$

• 
$$\sup(a_n) = \frac{1}{e}$$
 and  $\inf(a_n) = 0$ .

ም.

$$\lim_{n\to\infty}a_n=\inf(a_n)=0.$$

Jiwen He, University of Houston

/Jarch 11, 2008 14 / 1



## Example

Let 
$$a_n = \frac{n}{e^n}$$
.

• (*a<sub>n</sub>*) is decreasing

$$\leftarrow \quad \text{Let } f(x) = \frac{x}{e^x}.$$

$$f'(x) = \frac{e^x - xe^x}{e^{2x}} = \frac{1 - x}{e^x} < 0$$

• 
$$\sup(a_n) = \frac{1}{e}$$
 and  $\inf(a_n) = 0$ .

ም.

$$\Rightarrow \lim_{n\to\infty}a_n=\inf(a_n)=0.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 17

March 11, 2008 14

#### Example



3

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

#### Example





3

(本語)と 本語(と) 本語(と

## Example

Let 
$$a_n = n^{\frac{1}{n}}$$
,  $n = 1, 2, ...$   
•  $(a_n)$  is decreasing for  $n \ge 3$   
Let
$$f(x) = x^{1/x} = e^{(1/x)\ln x}$$

$$f'(x) = e^{(1/x)\ln x}((1/x)\ln x)' < 0$$
•  $\inf(a_n) = 1$ 

$$\lim_{n \to \infty} a_n = \inf(a_n) = 1$$

4

<ロ> (日) (日) (日) (日) (日)

## Example

Let 
$$a_n = n^{\frac{1}{n}}$$
,  $n = 1, 2, ...$   
•  $(a_n)$  is decreasing for  $n \ge 3$   
Let
 $f(x) = x^{1/x} = e^{(1/x) \ln x}$ .  
 $f'(x) = e^{(1/x) \ln x} ((1/x) \ln x)' < 0$   
•  $\inf(a_n) = 1$   
 $\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 1$ .

Jiwen He, University of Houston

arch 11, 2008 15

4

<ロ> (日) (日) (日) (日) (日)

## Example

Let 
$$a_n = n^{\frac{1}{n}}$$
,  $n = 1, 2, ...$   
•  $(a_n)$  is decreasing for  $n \ge 3$   
Let  $f(x) = x^{1/x} = e^{(1/x) \ln x}$ .  
 $f'(x) = e^{(1/x) \ln x} ((1/x) \ln x)' < 0$   
•  $\inf(a_n) = 1$   
 $\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 1$ .

Jiwen He, University of Houston

1arch 11, 2008 15 ,

4

<ロ> (日) (日) (日) (日) (日)

## Example

Let 
$$a_n = n^{\frac{1}{n}}$$
,  $n = 1, 2, ...$   
•  $(a_n)$  is decreasing for  $n \ge 3$   
Let  $f(x) = x^{1/x} = e^{(1/x) \ln x}$ .  
 $f'(x) = e^{(1/x) \ln x} ((1/x) \ln x)' < 0$   
•  $\inf(a_n) = 1$   
 $\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 1.$ 

Jiwen He, University of Houston

larch 11, 2008 15 ,

4

<≣⇒

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

## Example

Let 
$$a_n = n^{\frac{1}{n}}$$
,  $n = 1, 2, ...$   
•  $(a_n)$  is decreasing for  $n \ge 3$   
Let  $f(x) = x^{1/x} = e^{(1/x) \ln x}$ .  
 $f'(x) = e^{(1/x) \ln x} ((1/x) \ln x)' < 0$   
•  $\inf(a_n) = 1$   
 $\Rightarrow \lim_{n \to \infty} a_n = \inf(a_n) = 1$ .

Jiwen He, University of Houston

larch 11, 2008 15 /

4

-∢≣⇒

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ĺŀ

## Outline

- Real Numbers
  - Review
  - Least Upper Bound

• Sequences of Real Numbers



Jiwen He, University of Houston

16 / 16