Lecture 17
 Section 10.1 Least Upper Bound Axiom Section 10.2 Sequences of Real Numbers

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

$M=\sup S \quad \Rightarrow \quad \forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset$

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

$$
\text { - } \mathbb{N}=\{0,1,2, \ldots\}=\{\text { natural numbers }\}
$$

- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$

\mathbb{R} is An Ordered Field

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$

\mathbb{R} is An Ordered Field

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}$,

\mathbb{R} is An Ordered Field

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$

\mathbb{R} is An Ordered Field

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$
\mathbb{R} is An Ordered Field
- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$
\mathbb{R} is An Ordered Field
- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.
- $x \leq y$ and $y \leq x \Leftrightarrow x=y$.
- $\forall x, y \in \mathbb{R}$

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$

\mathbb{R} is An Ordered Field

- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.
- $x \leq y$ and $y \leq x \quad \Leftrightarrow \quad x=y$.
- $\forall x, y \in \mathbb{R} \Rightarrow x \leq y$ or $y \leq x$.
- $x \leq y$ and $z \in \mathbb{R}$

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$

\mathbb{R} is An Ordered Field

- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.
- $x \leq y$ and $y \leq x \Leftrightarrow x=y$.
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y$ or $y \leq x$.
- $x \leq y$ and $z \in \mathbb{R} \quad \Rightarrow \quad x+z \leq y+z$.

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered

Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$

\mathbb{R} is An Ordered Field

- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.
- $x \leq y$ and $y \leq x \Leftrightarrow x=y$.
- $\forall x, y \in \mathbb{R} \Rightarrow x \leq y$ or $y \leq x$.
- $x \leq y$ and $z \in \mathbb{R} \quad \Rightarrow \quad x+z \leq y+z$.
- $x \geq 0$ and $y \geq 0 \quad \Rightarrow \quad x y \geq 0$.

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

Dedekind Cut Axiom

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset$;

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset$;
- $\forall x \in E, \forall y \in F$, we have $x \leq y$

Then, $\exists z \in \mathbb{R}$ such that

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset$;
- $\forall x \in E, \forall y \in F$, we have $x \leq y$.

Then, $\exists z \in \mathbb{R}$ such that

Least Upper Bound Theorem

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset$;
- $\forall x \in E, \forall y \in F$, we have $x \leq y$.

Then, $\exists z \in \mathbb{R}$ such that

$$
x \leq z, \quad \forall x \in E \quad \text { and } \quad z \leq y, \quad \forall y \in F
$$

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum)

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y
$$

Dedekind Cut Axiom

Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset$;
- $\forall x \in E, \forall y \in F$, we have $x \leq y$.

Then, $\exists z \in \mathbb{R}$ such that

$$
x \leq z, \quad \forall x \in E \quad \text { and } \quad z \leq y, \quad \forall y \in F
$$

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

Least Upper Bound Theorem

Proof.

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

```
- S is bounded above if }\existsM\in\mathbb{R}\mathrm{ such that }x\leqM\mathrm{ for all }x\inS\mathrm{ ;
M is called an upper bound for S
```

m is called an lower bound for S

Least Upper Bound Theorem

Proof.

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.

Least Upper Bound Theorem

Proof.

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem
Every nonempty subset S of \mathbb{R} with an upper bound has a

Proof.

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem
Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E$
Dedekind cut

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E$ Dedekind cut

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E \quad \Rightarrow \quad(E, F)$ is a Dedekind cut

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E \Rightarrow(E, F)$ is a Dedekind cut $\Rightarrow \exists b \in \mathbb{R}$ such that $x \leq b, \forall x \in E$ and $b \leq y$, $\forall y \in F$; b is also an upper bound of S

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E \Rightarrow(E, F)$ is a Dedekind cut $\Rightarrow \exists b \in \mathbb{R}$ such that $x \leq b, \forall x \in E$ and $b \leq y$, $\forall y \in F ; b$ is also an upper bound of S

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition

Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S$; M is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S$; m is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E \Rightarrow(E, F)$ is a Dedekind cut $\Rightarrow \exists b \in \mathbb{R}$ such that $x \leq b, \forall x \in E$ and $b \leq y$, $\forall y \in F ; b$ is also an upper bound of $S \Rightarrow b$ is the lub of S.

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup(S) or lub(S) the supremum or least upper bound of S

Theorem

Definition

Theorem

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

Let $M=\sup (S)$. Then

Definition

Theorem

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

Let $M=\sup (S)$. Then

Definition

Theorem

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
\text { Let } M & =\sup (S) . \text { Then } \\
\cdot x & \leq M, \quad \forall x \in S ;
\end{aligned}
$$

Definition

Theorem

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } M=\sup (S) \text {. Then } \\
& \text { - } x \leq M, \quad \forall x \in S ; \\
& \text { - } \forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset
\end{aligned}
$$

Definition

Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $g l b(S)$ the infimum or greatest lower bound of S

Theorem

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } M=\sup (S) \text {. Then } \\
& \text { - } x \leq M, \quad \forall x \in S ; \\
& \cdot \forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset
\end{aligned}
$$

Definition

Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $\mathrm{glb}(S)$ the infimum or greatest lower bound of S.

Theorem

Let $m=\inf (S)$. Then

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } M=\sup (S) \text {. Then } \\
& \text { - } x \leq M, \quad \forall x \in S ; \\
& -\forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset
\end{aligned}
$$

Definition

Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $\operatorname{glb}(S)$ the infimum or greatest lower bound of S.

Theorem
 Let $m=\inf (S)$. Then

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by $\sup (S)$ or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } M=\sup (S) \text {. Then } \\
& \text { - } x \leq M, \quad \forall x \in S ; \\
& -\forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset
\end{aligned}
$$

Definition

Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $\operatorname{glb}(S)$ the infimum or greatest lower bound of S.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { Let } m=\inf (S) . \text { Then } \\
& \bullet \quad x \geq m, \quad \forall x \in S ;
\end{aligned}
$$

Supremum or Infimum of a Set S

Definition

Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by sup (S) or lub (S) the supremum or least upper bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } M=\sup (S) \text {. Then } \\
& \text { - } x \leq M, \quad \forall x \in S ; \\
& -\forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset
\end{aligned}
$$

Definition

Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $\operatorname{glb}(S)$ the infimum or greatest lower bound of S.

Theorem

$$
\begin{aligned}
& \text { Let } m=\inf (S) . \text { Then } \\
& \text { - } x \geq m, \quad \forall x \in S ; \\
& \text { - } \forall \epsilon>0, \quad[m, m+\epsilon] \cap S \neq \emptyset
\end{aligned}
$$

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds: $\sup \{1,2,3\}=3, \inf \{1,2,3\}=1$
- If $a<b$, then $b=\sup [a, b]=\sup [a, b)$ and $a=\inf [a, b]=\inf (a, b]$

Theorem

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds: $\sup \{1,2,3\}=3, \inf \{1,2,3\}=1$.
- If $a<b$, then

Theorem

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds:

$$
\sup \{1,2,3\}=3, \inf \{1,2,3\}=1
$$

- If $a<b$, then

$$
b=\sup [a, b]=\sup [a, b) \text { and } a=\inf [a, b]=\inf (a, b] .
$$

Theorem

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds:

$$
\sup \{1,2,3\}=3, \inf \{1,2,3\}=1
$$

- If $a<b$, then

$$
b=\sup [a, b]=\sup [a, b) \text { and } a=\inf [a, b]=\inf (a, b] .
$$

- If $S=\{q \in \mathbb{Q}: e<q<\pi\}$, then $\inf S=e$, sup $S=\pi$.

Theorem

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds:

$$
\sup \{1,2,3\}=3, \inf \{1,2,3\}=1
$$

- If $a<b$, then

$$
b=\sup [a, b]=\sup [a, b) \text { and } a=\inf [a, b]=\inf (a, b] .
$$

- If $S=\{q \in \mathbb{Q}: e<q<\pi\}$, then $\inf S=e$, sup $S=\pi$.
- If $S=\left\{x \in \mathbb{R}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.

Theorem

The notions of infimum and supremum are dual in the sense that
\square

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds:

$$
\sup \{1,2,3\}=3, \inf \{1,2,3\}=1
$$

- If $a<b$, then

$$
b=\sup [a, b]=\sup [a, b) \text { and } a=\inf [a, b]=\inf (a, b] .
$$

- If $S=\{q \in \mathbb{Q}: e<q<\pi\}$, then inf $S=e$, $\sup S=\pi$.
- If $S=\left\{x \in \mathbb{R}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.
- If $S=\left\{x \in \mathbb{Q}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.

Theorem

The notions of infimum and supremum are dual in the sense that $\inf (S)=-\sup (-S)$
where $-S=\{-s \mid s \in S\}$

Examples: Supremum or Infimum of a Set S

Examples

- Every finite subset of \mathbb{R} has both upper and lower bounds:

$$
\sup \{1,2,3\}=3, \inf \{1,2,3\}=1
$$

- If $a<b$, then

$$
b=\sup [a, b]=\sup [a, b) \text { and } a=\inf [a, b]=\inf (a, b] .
$$

- If $S=\{q \in \mathbb{Q}: e<q<\pi\}$, then $\inf S=e$, sup $S=\pi$.
- If $S=\left\{x \in \mathbb{R}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.
- If $S=\left\{x \in \mathbb{Q}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.

Theorem

The notions of infimum and supremum are dual in the sense that

$$
\inf (S)=-\sup (-S)
$$

where $-S=\{-s \mid s \in S\}$.

Sequences: Definition

Definition
A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}-\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}
\square

Examples

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R}
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.

The seque

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.
The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Examples

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.
The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Examples

- $a_{n}=\frac{1}{n}, n \in \mathbb{N}^{*}$, is the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$;

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.
The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Examples

- $a_{n}=\frac{1}{n}, n \in \mathbb{N}^{*}$, is the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$;
- $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, is the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$;
- $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, is the sequence $1,4,9,16$

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.
The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Examples

- $a_{n}=\frac{1}{n}, n \in \mathbb{N}^{*}$, is the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$;
- $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, is the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$;
- $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, is the sequence $1,4,9,16, \ldots$;
- $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, is the sequence $-1,1,-1$,

Sequences: Definition

Definition

A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R} .
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}.
The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.

Examples

- $a_{n}=\frac{1}{n}, n \in \mathbb{N}^{*}$, is the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$;
- $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, is the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$;
- $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, is the sequence $1,4,9,16, \ldots$;
- $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, is the sequence $-1,1,-1, \ldots$.

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
\boldsymbol{I}=\lim _{n \rightarrow \infty} a_{n}
$$

if $\quad \forall \epsilon>0, \quad \exists N \in \mathbb{N}$ such that $\left|a_{n}-L\right|<\epsilon, \forall n>N$.

Examples

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n},
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n},
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=0$

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n},
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n},
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\frac{1}{n+1}<\frac{1}{N+1}<\epsilon$.

- If $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=1$

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n}
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\frac{1}{n+1}<\frac{1}{N+1}<\epsilon$.

- If $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=1$.

For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<$

Limit of a Sequence

Definition

Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n}
$$

if

$$
\forall \epsilon>0, \quad \exists N \in \mathbb{N} \text { such that }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\frac{1}{n+1}<\frac{1}{N+1}<\epsilon$.

- If $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=1$.

For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e.,
$\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\left|\frac{n}{n+1}-1\right|=\frac{1}{n}<\frac{1}{N}<\epsilon$.

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.

Uniqueness of Limit
If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n}=M$, then $L=M$.

Proof.

Example

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit
If $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} a_{n}=M$, then $L=M$.
Proof.

Example

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M \text {. }
$$

Proof.

Example

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N .
$$

Example

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \Rightarrow L=M .
\end{aligned}
$$

Example

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M .
\end{aligned}
$$

Example

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent.

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M .
\end{aligned}
$$

Example

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent.
If $\epsilon=\frac{1}{3}$, then the interval $\left(x-\frac{1}{3}, x+\frac{1}{3}\right)$ has a length $\frac{2}{3}$ that is $<1 ; \forall x \in \mathbb{R}$, it can not contain 1 and -1 at the same time

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M .
\end{aligned}
$$

Example

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent.
If $\epsilon=\frac{1}{3}$, then the interval $\left(x-\frac{1}{3}, x+\frac{1}{3}\right)$ has a length $\frac{2}{3}$ that is <1; \qquad Therefore it is not possible to find N such that

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M .
\end{aligned}
$$

Example

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent.
If $\epsilon=\frac{1}{3}$, then the interval $\left(x-\frac{1}{3}, x+\frac{1}{3}\right)$ has a length $\frac{2}{3}$ that is $<1 ; \forall x \in \mathbb{R}$, it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that

Convergent Sequence

Definition

- A sequence that has a limit is said to be convergent.
- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M \text {, then } L=M
$$

Proof.

$$
\begin{aligned}
& \forall \epsilon>0, \exists N>0 \text { such that }\left|a_{n}-L\right|<\frac{\epsilon}{2} \text { and }\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \\
& \quad \Rightarrow|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M .
\end{aligned}
$$

Example

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent.
If $\epsilon=\frac{1}{3}$, then the interval $\left(x-\frac{1}{3}, x+\frac{1}{3}\right)$ has a length $\frac{2}{3}$ that is $<1 ; \forall x \in \mathbb{R}$, it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that $\left|a_{n}-x\right|<\frac{1}{3}$ if

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or
 below or bounded

Examples

Theorem

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

```
- If }\mp@subsup{a}{n}{}=\frac{1}{n+1},n\in\mp@subsup{\mathbb{N}}{}{*}\mathrm{ , then the sequence }(\mp@subsup{a}{n}{})\mathrm{ is bounded above
by }M\geq1\mathrm{ and bounded below by }m\leq0\mathrm{ .
```

- If $a_{n}=\cos n \pi=(-1)^{n} \quad n \in \mathbb{N}^{*}$ then M
bound for the sequence $\left(a_{n}\right)$ and $m \leq$
for the sequence $\left(a_{n}\right)$

Theorem

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper
bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

$$
\lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

$$
\lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. }\left|a_{n}-L\right|<\epsilon, \forall n>N
$$

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

$$
\begin{align*}
& \lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. }\left|a_{n}-L\right|<\epsilon, \forall n>N \\
& \Rightarrow\left|a_{n}\right| \leq\left|a_{n}-L\right|+|L|<\epsilon+|L|, \forall n>N \Rightarrow \text { done! }
\end{align*}
$$

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded．

Examples

－If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$ ，then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$ ．
－If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$ ，then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$ ．

Theorem

Every convergent sequence is bounded．

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N} \text { s.t. }\left|a_{n}-L\right|<\epsilon, \forall n>N \\
& \Rightarrow\left|a_{n}\right| \leq\left|a_{n}-L\right|+|L|<\epsilon+|L|, \forall n>N \Rightarrow \text { done! }
\end{aligned}
$$

Boundedness of a Sequence

Definition

A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.
- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem

Every convergent sequence is bounded.

Theorem

Every unbounded sequence is divergent.

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$

Theorem

Examples

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$

Theorem

- A bounded, increasing sequence converges to its lub;

Examples

— 斦

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;

- a bounded, decreasing sequence converges to its g/b.

Examples

— 珻

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

Examples

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

Examples

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is decreasing, bounded, and $\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0$.

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is decreasing, bounded, and

$$
\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0 . \Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{1}{n+2} \frac{n+1}{1}=\frac{n+1}{n+2}<1
$$

above, therefore is divergent.

Monotonic Sequence

Definition

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.
- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem

- A bounded, increasing sequence converges to its lub;
- a bounded, decreasing sequence converges to its glb.

Examples

- If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is decreasing, bounded, and $\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0 . \Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{1}{n+2} \frac{n+1}{1}=\frac{n+1}{n+2}<1$
- If $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is increasing, but unbounded above, therefore is divergent.

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}$

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}$,

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}, \ldots$..

$$
\Rightarrow \sup \left(a_{n}\right)=1 \text { and } \inf \left(a_{n}\right)=\frac{1}{2}
$$

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}, \ldots$..
$\Rightarrow \sup \left(a_{n}\right)=1$ and $\inf \left(a_{n}\right)=\frac{1}{2}$
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\sup \left(a_{n}\right)=1$.

Example

Example

Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}, \ldots$.
$\Rightarrow \sup \left(a_{n}\right)=1$ and $\inf \left(a_{n}\right)=\frac{1}{2}$
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\sup \left(a_{n}\right)=1$.

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$. - $\left(a_{n}\right)$ is decreasing

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing

$$
\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)} \frac{n}{2^{n}}=\frac{2}{n+1}<1
$$

$$
\text { - } \sup \left(a_{n}\right)=2 \text { and } \inf \left(a_{n}\right)=0
$$

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing

$$
\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)} \frac{n}{2^{n}}=\frac{2}{n+1}<1
$$

- $\sup \left(a_{n}\right)=2$ and $\inf \left(a_{n}\right)=0$

$$
\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0
$$

Example

Example

Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing

$$
\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)} \frac{n}{2^{n}}=\frac{2}{n+1}<1
$$

- $\sup \left(a_{n}\right)=2$ and $\inf \left(a_{n}\right)=0$
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0$.

Example

Example

$$
\begin{aligned}
& \text { Let } a_{n}=\frac{n}{e^{n}} . \\
& \quad\left(a_{n}\right) \text { is decreasing }
\end{aligned}
$$

Example

Example

Let $a_{n}=\frac{n}{e^{n}}$.

- $\left(a_{n}\right)$ is decreasing

Example

Example

Let $a_{n}=\frac{n}{e^{n}}$.

- $\left(a_{n}\right)$ is decreasing

\Leftarrow Let $f(x)=\frac{x}{e^{x}}$.

Example

Example

Let $a_{n}=\frac{n}{e^{n}}$.

- $\left(a_{n}\right)$ is decreasing

\Leftarrow Let $f(x)=\frac{x}{e^{x}}$.

- $\sup \left(a_{n}\right)=\frac{1}{e}$ and $\inf \left(a_{n}\right)=0$

Example

Example

Let $a_{n}=\frac{n}{e^{n}}$.

- $\left(a_{n}\right)$ is decreasing

$$
\Leftarrow \quad \text { Let } f(x)=\frac{x}{e^{x}} \text {. }
$$

$$
f^{\prime}(x)=\frac{e^{x}-x e^{x}}{e^{2 x}}=\frac{1-x}{e^{x}}<0
$$

$$
\text { - } \sup \left(a_{n}\right)=\frac{1}{e} \text { and } \inf \left(a_{n}\right)=0 \text {. }
$$

Example

Example

$$
\begin{aligned}
& \text { Let } a_{n}=\frac{n}{e^{n}} . \\
& \qquad\left(a_{n}\right) \text { is decreasing }
\end{aligned}
$$

$$
\begin{aligned}
& \Leftarrow \text { Let } f(x)=\frac{x}{e^{x}} . \\
& f^{\prime}(x)=\frac{e^{x}-x e^{x}}{e^{2 x}}=\frac{1-x}{e^{x}}<0
\end{aligned}
$$

- $\sup \left(a_{n}\right)=\frac{1}{e}$ and $\inf \left(a_{n}\right)=0$.
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0$.

Example

Example

$$
\begin{aligned}
& \text { Let } a_{n}=\frac{n}{e^{n}} . \\
& \qquad\left(a_{n}\right) \text { is decreasing }
\end{aligned}
$$

$$
\begin{aligned}
& \Leftarrow \text { Let } f(x)=\frac{x}{e^{x}} \\
& f^{\prime}(x)=\frac{e^{x}-x e^{x}}{e^{2 x}}=\frac{1-x}{e^{x}}<0 \\
& \bullet \sup \left(a_{n}\right)=\frac{1}{e} \text { and } \inf \left(a_{n}\right)=0 \\
& \Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
& \text { Let } a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots \\
& \quad\left(a_{n}\right) \text { is decreasing for } n \geq 3
\end{aligned}
$$

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Let

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Let

$$
f(x)=x^{1 / x}=e^{(1 / x) \ln x}
$$

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Let

$$
\begin{gathered}
f(x)=x^{1 / x}=e^{(1 / x) \ln x} . \\
f^{\prime}(x)=e^{(1 / x) \ln x}((1 / x) \ln x)^{\prime}<0
\end{gathered}
$$

- $\inf \left(a_{n}\right)=1$
\square

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Let

$$
\begin{gathered}
f(x)=x^{1 / x}=e^{(1 / x) \ln x} . \\
f^{\prime}(x)=e^{(1 / x) \ln x}((1 / x) \ln x)^{\prime}<0
\end{gathered}
$$

- $\inf \left(a_{n}\right)=1$
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=1$.

Example

Example

Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$.

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$

Let

$$
\begin{gathered}
f(x)=x^{1 / x}=e^{(1 / x) \ln x} . \\
f^{\prime}(x)=e^{(1 / x) \ln x}((1 / x) \ln x)^{\prime}<0
\end{gathered}
$$

- $\inf \left(a_{n}\right)=1$
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=1$.

Outline

- Real Numbers
- Review
- Least Upper Bound
- Sequences of Real Numbers

