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1 Real Numbers

1.1 Review

Basic Properties of R: R being Ordered

Classification

• N = {0, 1, 2, . . .} = {natural numbers}

• Z = {. . . ,−2,−1, 0, 1, 2, . . . , } = {integers}

• Q = {p
q : p, q ∈ Z, q 6= 0} = {rational numbers}

• R = {real numbers} = Q ∪ {irrational numbers (π,
√

2,. . .)}

R is An Ordered Field

• x ≤ y and y ≤ z ⇒ x ≤ z.

• x ≤ y and y ≤ x ⇔ x = y.

• ∀x, y ∈ R ⇒ x ≤ y or y ≤ x.

• x ≤ y and z ∈ R ⇒ x + z ≤ y + z.

• x ≥ 0 and y ≥ 0 ⇒ xy ≥ 0.

Archimedean Property and Dedekind Cut Axiom

Archimedean Property
∀x > 0, ∀y > 0, ∃n ∈ N such that nx > y.

Dedekind Cut Axiom
Let E and F be two nonempty subsets of R such that

• E ∪ F = R;
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• E ∩ F = ∅;

• ∀x ∈ E, ∀y ∈ F , we have x ≤ y.

Then, ∃z ∈ R such that
x ≤ z, ∀x ∈ E and z ≤ y, ∀y ∈ F.

Least Upper Bound Theorem
Every nonempty subset S of R with an upper bound has a least upper bound

(also called supremum).

1.2 Least Upper Bound

Basic Properties of R: Least Upper Bound Property
Definition 1. Let S be a nonempty subset S of R.

• S is bounded above if ∃M ∈ R such that x ≤ M for all x ∈ S; M is called
an upper bound for S.

• S is bounded below if ∃m ∈ R such that x ≥ m for all x ∈ S; m is called
an lower bound for S.

• S is bounded if it is bounded above and below.

Least Upper Bound Theorem
Every nonempty subset S of R with an upper bound has a least upper bound

(also called supremum).

Proof.
Let F = {upper bounds for S} and E = R \ E ⇒ (E,F ) is a Dedekind cut
⇒ ∃b ∈ R such that x ≤ b, ∀x ∈ E and b ≤ y, ∀y ∈ F ; b is also an upper
bound of S ⇒ b is the lub of S.

Supremum or Infimum of a Set S
Definition 2. Let S be a nonempty subset of R with an upper bound. We
denote by sup(S) or lub(S) the supremum or least upper bound of S.

Theorem 3. Let M = sup(S). Then

• x ≤ M , ∀x ∈ S;
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• ∀ε > 0, (M − ε,M ] ∩ S 6= ∅
Definition 4. Let S be a nonempty subset of R with a lower bound. We denote
by inf(S) or glb(S) the infimum or greatest lower bound of S.

Theorem 5. Let m = inf(S). Then

• x ≥ m, ∀x ∈ S;

• ∀ε > 0, [m,m + ε] ∩ S 6= ∅

Examples: Supremum or Infimum of a Set S

Examples 6. • Every finite subset of R has both upper and lower bounds:
sup{1, 2, 3} = 3, inf{1, 2, 3} = 1.

• If a < b, then b = sup[a, b] = sup[a, b) and a = inf[a, b] = inf(a, b].

• If S = {q ∈ Q : e < q < π}, then inf S = e, sup S = π.

• If S = {x ∈ R : x2 < π}, then inf S = −
√

3, sup S =
√

3.

• If S = {x ∈ Q : x2 < π}, then inf S = −
√

3, sup S =
√

3.

Theorem 7. The notions of infimum and supremum are dual in the sense that

inf(S) = − sup(−S)
where −S = {−s|s ∈ S}.

2 Sequences of Real Numbers

Sequences: Definition

Definition 8. A sequence of real numbers is a real-valued function defined on
the set of positive integers N∗:

N∗ = {1, 2, . . .} 3 n 7→ an = f(n) ∈ R.

where the nth term f(n) is denoted by an. [2ex] The sequence a1, a2, . . ., is
denoted by (an)∞n=1 or (an).

Examples 9. • an = 1
n , n ∈ N∗, is the sequence 1, 1

2 , 1
3 , 1

4 , . . .;

• an = n
n+1 , n ∈ N∗, is the sequence 1

2 , 2
3 , 3

4 , 4
5 , . . .;

• an = n2, n ∈ N∗, is the sequence 1, 4, 9, 16, . . .;

• an = cos nπ = (−1)n, n ∈ N∗, is the sequence −1, 1, −1, . . ..
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Limit of a Sequence
Definition 10. Let (an)∞n=1 be a sequence of real numbers. A real number L
is a limit of (an)∞n=1, denoted by

L = lim
n→∞

an,

if ∀ε > 0, ∃N ∈ N such that |an − L| < ε, ∀n > N.Examples 11. • If an = 1
n+1 , n ∈ N∗, then limn→∞ an = 0. For any ε > 0

given, choose N > 0 such that εN > 1, i.e., 1
N < ε. Then, if n > N , we

have 0 < 1
n+1 < 1

N+1 < ε.

• If an = n
n+1 , n ∈ N∗, then limn→∞ an = 1. For any ε > 0 given,

choose N > 0 such that εN > 1, i.e., 1
N < ε. Then, if n > N , we have

0 <
∣∣∣ n
n+1 − 1

∣∣∣ = 1
n < 1

N < ε.

Convergent Sequence
Definition 12. • A sequence that has a limit is said to be convergent.

• A sequence that has no limit is said to be divergent.

Uniqueness of Limit
If limn→∞ an = L and limn→∞ an = M , then L = M .

Proof.
∀ε > 0, ∃N > 0 such that |an − L| < ε

2 and |an −M | < ε
2 , ∀n > N . ⇒

|L−M | ≤ |an − L|+ |an −M | < ε ⇒ L = M .

Example 13. • If an = cos nπ = (−1)n, n ∈ N∗, the sequence (an) is diver-
gent. If ε = 1

3 , then the interval (x − 1
3 , x + 1

3 ) has a length 2
3 that is

< 1; ∀x ∈ R, it can not contain 1 and −1 at the same time. Therefore it
is not possible to find N such that |an − x| < 1

3 if n > N .

Boundedness of a Sequence
Definition 14. A sequence (an)∞n=1 is bounded above or bounded below or
bounded if the set S = {a1, a2, . . .} is bounded above or bounded below or bounded.

Examples 15. • If an = 1
n+1 , n ∈ N∗, then the sequence (an) is bounded

above by M ≥ 1 and bounded below by m ≤ 0.

• If an = cos nπ = (−1)n, n ∈ N∗, then M ≥ 1 is an upper bound for the
sequence (an) and m ≤ −1 is an lower bound for the sequence (an).

Theorem 16. Every convergent sequence is bounded.

limn→∞ an = L ⇒ ∀ε > 0, ∃N ∈ N s.t. |an − L| < ε, ∀n > N ⇒ |an| ≤
|an − L|+ |L| < ε + |L|, ∀n > N ⇒ done!

Theorem 17. Every unbounded sequence is divergent.
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Monotonic Sequence
Definition 18. • A sequence (an)∞n=1 is increasing if an ≤ an+1 for all

n ∈ N∗.

• A sequence (an)∞n=1 is decreasing if an ≥ an+1 for all n ∈ N∗.

Theorem 19. • A bounded, increasing sequence converges to its lub;

• a bounded, decreasing sequence converges to its glb.

Examples 20. • If an = 1
n+1 , n ∈ N∗, then (an) is decreasing, bounded, and

limn→∞ an = inf(an) = 0. ⇐ an+1
an

= 1
n+2

n+1
1 = n+1

n+2 < 1

• If an = n2, n ∈ N∗, then (an) is increasing, but unbounded above, therefore
is divergent.

Example

Example 21. Let an = n
n+1 , n ∈ N∗.

• (an) is increasing ⇐ an+1
an

= n+1
n+2 ·

n+1
n = n2+2n+1

n2+2n > 1

• The sequence displays as 1
2 , 2

3 , 3
4 , . . ., 99

100 , . . .. ⇒ sup(an) = 1 and
inf(an) = 1

2

⇒ lim
n→∞

an = sup(an) = 1.

Example
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Example 22. Let an = 2n

n with n= n(n− 1) · · · 1.

• (an) is decreasing ⇐ an+1

an
=

2n+1

(n + 1)
n

2n
=

2
n + 1

< 1

• sup(an) = 2 and inf(an) = 0

⇒ lim
n→∞

an = inf(an) = 0.

Example
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Example 23. Let an = n
en .

• (an) is decreasing[4ex]⇐ Let f(x) = x
ex . [1ex]

f ′(x) =
ex − xex

e2x
=

1− x

ex
< 0

• sup(an) = 1
e and inf(an) = 0.

⇒ lim
n→∞

an = inf(an) = 0.

Example

Example 24. Let an = n
1
n , n = 1, 2, . . .

• (an) is decreasing for n ≥ 3 [1ex] Let
f(x) = x1/x = e(1/x) ln x.

[1ex] f ′(x) = e(1/x) ln x
(
(1/x) ln x

)′
< 0

• inf(an) = 1

⇒ lim
n→∞

an = inf(an) = 1.

Outline
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