Lecture 17 Section 10.1 Least Upper Bound Axiom Section 10.2 Sequences of Real Numbers

Jiwen He

1 Real Numbers

1.1 Review

Basic Properties of $\mathbb{R}: \mathbb{R}$ being Ordered
Classification

- $\mathbb{N}=\{0,1,2, \ldots\}=\{$ natural numbers $\}$
- $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}=,\{$ integers $\}$
- $\mathbb{Q}=\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}=\{$ rational numbers $\}$
- $\mathbb{R}=\{$ real numbers $\}=\mathbb{Q} \cup\{$ irrational numbers $(\pi, \sqrt{2}, \ldots)\}$

\mathbb{R} is An Ordered Field

- $x \leq y$ and $y \leq z \quad \Rightarrow \quad x \leq z$.
- $x \leq y$ and $y \leq x \quad \Leftrightarrow \quad x=y$.
- $\forall x, y \in \mathbb{R} \quad \Rightarrow \quad x \leq y$ or $y \leq x$.
- $x \leq y$ and $z \in \mathbb{R} \quad \Rightarrow \quad x+z \leq y+z$.
- $x \geq 0$ and $y \geq 0 \quad \Rightarrow \quad x y \geq 0$.

Archimedean Property and Dedekind Cut Axiom

Archimedean Property

$$
\forall x>0, \forall y>0, \exists n \in \mathbb{N} \text { such that } n x>y .
$$

Dedekind Cut Axiom
Let E and F be two nonempty subsets of \mathbb{R} such that

- $E \cup F=\mathbb{R}$;
- $E \cap F=\emptyset ;$
- $\forall x \in E, \forall y \in F$, we have $x \leq y$.

Then, $\exists z \in \mathbb{R}$ such that

$$
x \leq z, \quad \forall x \in E \quad \text { and } \quad z \leq y, \quad \forall y \in F
$$

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

1.2 Least Upper Bound

Basic Properties of \mathbb{R} : Least Upper Bound Property

Definition 1. Let S be a nonempty subset S of \mathbb{R}.

- S is bounded above if $\exists M \in \mathbb{R}$ such that $x \leq M$ for all $x \in S ; M$ is called an upper bound for S.
- S is bounded below if $\exists m \in \mathbb{R}$ such that $x \geq m$ for all $x \in S ; m$ is called an lower bound for S.
- S is bounded if it is bounded above and below.

Least Upper Bound Theorem

Every nonempty subset S of \mathbb{R} with an upper bound has a least upper bound (also called supremum).

Proof.

Let $F=\{$ upper bounds for $S\}$ and $E=\mathbb{R} \backslash E \Rightarrow(E, F)$ is a Dedekind cut $\Rightarrow \quad \exists b \in \mathbb{R}$ such that $x \leq b, \forall x \in E$ and $b \leq y, \forall y \in F ; b$ is also an upper bound of $S \Rightarrow b$ is the lub of S.

Supremum or Infimum of a Set S

Definition 2. Let S be a nonempty subset of \mathbb{R} with an upper bound. We denote by $\sup (S)$ or $l u b(S)$ the supremum or least upper bound of S.

Theorem 3. Let $M=\sup (S)$. Then

- $x \leq M, \quad \forall x \in S$;
- $\forall \epsilon>0, \quad(M-\epsilon, M] \cap S \neq \emptyset$

Definition 4. Let S be a nonempty subset of \mathbb{R} with a lower bound. We denote by $\inf (S)$ or $g l b(S)$ the infimum or greatest lower bound of S.

Theorem 5. Let $m=\inf (S)$. Then

- $x \geq m, \quad \forall x \in S$;
- $\forall \epsilon>0, \quad[m, m+\epsilon] \cap S \neq \emptyset$

Examples: Supremum or Infimum of a Set S

Examples 6. - Every finite subset of \mathbb{R} has both upper and lower bounds: $\sup \{1,2,3\}=3, \inf \{1,2,3\}=1$.

- If $a<b$, then $b=\sup [a, b]=\sup [a, b)$ and $a=\inf [a, b]=\inf (a, b]$.
- If $S=\{q \in \mathbb{Q}: e<q<\pi\}$, then $\inf S=e, \sup S=\pi$.
- If $S=\left\{x \in \mathbb{R}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}$, sup $S=\sqrt{3}$.
- If $S=\left\{x \in \mathbb{Q}: x^{2}<\pi\right\}$, then $\inf S=-\sqrt{3}, \sup S=\sqrt{3}$.

Theorem 7. The notions of infimum and supremum are dual in the sense that

$$
\inf (S)=-\sup (-S)
$$

where $-S=\{-s \mid s \in S\}$.

2 Sequences of Real Numbers

Sequences: Definition

Definition 8. A sequence of real numbers is a real-valued function defined on the set of positive integers \mathbb{N}^{*} :

$$
\mathbb{N}^{*}=\{1,2, \ldots\} \ni n \mapsto a_{n}=f(n) \in \mathbb{R}
$$

where the $n^{\text {th }}$ term $f(n)$ is denoted by a_{n}. [2ex] The sequence a_{1}, a_{2}, \ldots, is denoted by $\left(a_{n}\right)_{n=1}^{\infty}$ or $\left(a_{n}\right)$.
Examples 9. - $a_{n}=\frac{1}{n}, n \in \mathbb{N}^{*}$, is the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$;

- $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, is the sequence $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$;
- $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, is the sequence $1,4,9,16, \ldots$;
- $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, is the sequence $-1,1,-1, \ldots$

Limit of a Sequence

Definition 10. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. A real number L is a limit of $\left(a_{n}\right)_{n=1}^{\infty}$, denoted by

$$
L=\lim _{n \rightarrow \infty} a_{n}
$$

 given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\frac{1}{n+1}<\frac{1}{N+1}<\epsilon$.

- If $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$, then $\lim _{n \rightarrow \infty} a_{n}=1$. For any $\epsilon>0$ given, choose $N>0$ such that $\epsilon N>1$, i.e., $\frac{1}{N}<\epsilon$. Then, if $n>N$, we have $0<\left|\frac{n}{n+1}-1\right|=\frac{1}{n}<\frac{1}{N}<\epsilon$.

Convergent Sequence

Definition 12. - A sequence that has a limit is said to be convergent.

- A sequence that has no limit is said to be divergent.

Uniqueness of Limit

$$
\text { If } \lim _{n \rightarrow \infty} a_{n}=L \text { and } \lim _{n \rightarrow \infty} a_{n}=M, \text { then } L=M
$$

Proof.

$\forall \epsilon>0, \exists N>0$ such that $\left|a_{n}-L\right|<\frac{\epsilon}{2}$ and $\left|a_{n}-M\right|<\frac{\epsilon}{2}, \forall n>N . \quad \Rightarrow$ $|L-M| \leq\left|a_{n}-L\right|+\left|a_{n}-M\right|<\epsilon \quad \Rightarrow \quad L=M$.
Example 13. - If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, the sequence $\left(a_{n}\right)$ is divergent. If $\epsilon=\frac{1}{3}$, then the interval $\left(x-\frac{1}{3}, x+\frac{1}{3}\right)$ has a length $\frac{2}{3}$ that is $<1 ; \forall x \in \mathbb{R}$, it can not contain 1 and -1 at the same time. Therefore it is not possible to find N such that $\left|a_{n}-x\right|<\frac{1}{3}$ if $n>N$.

Boundedness of a Sequence

Definition 14. A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is bounded above or bounded below or bounded if the set $S=\left\{a_{1}, a_{2}, \ldots\right\}$ is bounded above or bounded below or bounded.
Examples 15. - If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then the sequence $\left(a_{n}\right)$ is bounded above by $M \geq 1$ and bounded below by $m \leq 0$.

- If $a_{n}=\cos n \pi=(-1)^{n}, n \in \mathbb{N}^{*}$, then $M \geq 1$ is an upper bound for the sequence $\left(a_{n}\right)$ and $m \leq-1$ is an lower bound for the sequence $\left(a_{n}\right)$.

Theorem 16. Every convergent sequence is bounded.
$\lim _{n \rightarrow \infty} a_{n}=L \Rightarrow \forall \epsilon>0, \exists N \in \mathbb{N}$ s.t. $\left|a_{n}-L\right|<\epsilon, \forall n>N \Rightarrow\left|a_{n}\right| \leq$ $\left|a_{n}-L\right|+|L|<\epsilon+|L|, \forall n>N \Rightarrow$ done!

Theorem 17. Every unbounded sequence is divergent.

Monotonic Sequence

Definition 18. - A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is increasing if $a_{n} \leq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

- A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ is decreasing if $a_{n} \geq a_{n+1}$ for all $n \in \mathbb{N}^{*}$.

Theorem 19. - A bounded, increasing sequence converges to its lub;

- a bounded, decreasing sequence converges to its glb.

Examples 20. - If $a_{n}=\frac{1}{n+1}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is decreasing, bounded, and $\lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0 . \Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{1}{n+2} \frac{n+1}{1}=\frac{n+1}{n+2}<1$

- If $a_{n}=n^{2}, n \in \mathbb{N}^{*}$, then $\left(a_{n}\right)$ is increasing, but unbounded above, therefore is divergent.

Example

Example 21. Let $a_{n}=\frac{n}{n+1}, n \in \mathbb{N}^{*}$.

- $\left(a_{n}\right)$ is increasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{n+1}{n+2} \cdot \frac{n+1}{n}=\frac{n^{2}+2 n+1}{n^{2}+2 n}>1$
- The sequence displays as $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{99}{100}, \ldots . \Rightarrow \sup \left(a_{n}\right)=1$ and $\inf \left(a_{n}\right)=\frac{1}{2}$
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\sup \left(a_{n}\right)=1$.

Example

Example 22. Let $a_{n}=\frac{2^{n}}{n}$ with $n=n(n-1) \cdots 1$.

- $\left(a_{n}\right)$ is decreasing $\Leftarrow \frac{a_{n+1}}{a_{n}}=\frac{2^{n+1}}{(n+1)} \frac{n}{2^{n}}=\frac{2}{n+1}<1$
- $\sup \left(a_{n}\right)=2$ and $\inf \left(a_{n}\right)=0$
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0$.
Example

Example 23. Let $a_{n}=\frac{n}{e^{n}}$.

- $\left(a_{n}\right)$ is decreasing[4 Let $f(x)=\frac{x}{e^{x}}$. [1ex]

$$
f^{\prime}(x)=\frac{e^{x}-x e^{x}}{e^{2 x}}=\frac{1-x}{e^{x}}<0
$$

- $\sup \left(a_{n}\right)=\frac{1}{e}$ and $\inf \left(a_{n}\right)=0$.
$\Rightarrow \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=0$.

Example

Example 24. Let $a_{n}=n^{\frac{1}{n}}, n=1,2, \ldots$

- $\left(a_{n}\right)$ is decreasing for $n \geq 3$ [1ex] Let

$$
f(x)=x^{1 / x}=e^{(1 / x) \ln x}
$$

$[1 \mathrm{ex}] \quad f^{\prime}(x)=e^{(1 / x) \ln x}((1 / x) \ln x)^{\prime}<0$

- $\inf \left(a_{n}\right)=1$
$\Rightarrow \quad \lim _{n \rightarrow \infty} a_{n}=\inf \left(a_{n}\right)=1$.

Outline

Contents

