
Limit of Sequence Some Limits

Lecture 18
Section 10.3 Limit of Sequence

Section 10.4 Some Important Limits

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu
http://math.uh.edu/∼jiwenhe/Math1432

M = sup S ⇒ ∀ε > 0, (M − ε, M] ∩ S 6= ∅

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 18 March 13, 2008 1 / 15



Limit of Sequence Some Limits Properties of Limits

Properties of Limits

Properties of Limits: 1

Let lim
n→∞

an = L and lim
n→∞

bn = M. Then

lim
n→∞

can = cL

lim
n→∞

(an + bn) = L + M

lim
n→∞

anbn = LM

lim
n→∞

an

bn
=

L

M
for M 6= 0.

lim
n→∞

f (an) = f (L) for f being continuous at L.

Example

If lim
n→∞

an = L, then lim
n→∞

bn = eL where bn = ean .
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Limit of Sequence Some Limits Properties of Limits

Limit of Sequence Defined by Rational Function

Properties of Limits

Let an = αpn
p + αp−1n

p−1 + · · ·+ α0 with αp 6= 0, and
bn = βqn

q + βq−1n
q−1 + · · ·+ β0 with βq 6= 0. Then

If p < q, then lim
n→∞

an

bn
= 0.

If p = q, then lim
n→∞

an

bn
=

αp

βq
.

If p > q, then lim
n→∞

an

bn
does not exist, and the sequence

an

bn
diverges.

Example

lim
n→∞

3n4 − 2n2 + 1

n5 − 3n3
= 0. lim

n→∞

1− 4n7

n7 + 12n
= −4.

lim
n→∞

n4 − 3n2 + n + 2

n3 + 7n
does not exist.
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Limit of Sequence Some Limits Properties of Limits

Pinching Theorem

Pinching Theorem

Suppose that for all n greater than some integer N,

an ≤ bn ≤ cn.

If lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Suppose that |bn| ≤ an, ∀n > N for some N.
If an → 0, then bn → 0.

Example

cosn

n
→ 0, since

∣∣∣∣cosn

n

∣∣∣∣ ≤ 1

n
and

1

n
→ 0.
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Limit of Sequence Some Limits Some Limits

Some Important Limits: 1

lim
n→∞

1

nα
= 0, α > 0.

Proof.

∀α > 0, ∃p ∈ N s.t. 1/p < α. Then

0 <
1

nα
=

(
1

n

)α

<

(
1

n

)1/p

Since 1
n → 0 and f (u) = u1/p is continuous at 0, we have

lim
n→∞

(
1

n

)1/p

= lim
n→∞

(
1

n

)1/p

= lim
u→0

u1/p = 01/p = 0.

By the pinching theorem,

lim
n→∞

1

nα
= 0, α > 0.
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Limit of Sequence Some Limits Some Limits

Some Important Limits: 2

lim
n→∞

x
1
n = 1, x > 0.

Proof.

Note that ∀x ,

ln
(
x

1
n

)
=

1

n
ln x → 0, as n →∞.

Since f (u) = eu is continuous at 0, we have

lim
n→∞

x
1
n = lim

n→∞
e

1
n

ln x = lim
u→0

eu = e0 = 1.
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Limit of Sequence Some Limits Some Limits

Some Important Limits: 3

lim
n→∞

xn = 0 if |x | < 1.

(The limit does not exist if |x | > 1 or x = −1.)

Proof.

Note that for any x s.t. 0 < |x | < 1, we have ln |x | < 0 and

ln (|x |n) = n ln |x | → −∞, as n →∞.

Since lim
u→−∞

eu = 0, we have

lim
n→∞

|xn| = lim
n→∞

|x |n = lim
n→∞

en ln |x | = lim
u→−∞

eu = 0.

Therefore, lim
n→∞

xn = 0 if |x | < 1.

(The sequence xn, |x | > 1, is unbounded, thus divergent.)
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Limit of Sequence Some Limits Some Limits

Alembert’s Rule

Alembert’s Rule

Let (an)
∞
n=1, an 6= 0 ∀n such that lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ. If ρ < 1, then

the sequence (an)
∞
n=1 converges to 0, and, if ρ > 1, it diverges.

Proof. (ρ < 1)

Since 0 <
1 + ρ

2
< 1, lim

n→∞

(
1 + ρ

2

)n

= 0. Since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ,

∃N1 s.t. ∀n > N1,

∣∣∣∣an+1

an

∣∣∣∣ ≤ ρ +
1− ρ

2
, thus |an+1| ≤

1 + ρ

2
|an|.

Then, for n > N1,

|an| ≤
1 + ρ

2
|an−1| ≤

(
1 + ρ

2

)2

|an−2| ≤ · · · ≤
(

1 + ρ

2

)n−N1

|aN1 |

and therefore limn→∞ |an| = 0. Since −|an| ≤ an ≤ |an|, by the
pinching theorem, we have limn→∞ an = 0.
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Limit of Sequence Some Limits Some Limits

Some Important Limits: 4

lim
n→∞

xn

n!
= 0.

Proof.

Note that∣∣∣∣an+1

an

∣∣∣∣ =
|x |n+1

(n + 1)!

n!

|x |n
=

|x |
n + 1

→ 0 as n →∞

By Alembert’s Rule,
lim

n→∞

xn

n!
= 0.
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Limit of Sequence Some Limits Some Limits

Some Important Limits: 5

lim
n→∞

np

xn
= 0, |x | > 1.

Proof.

Note that∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)p

|x |n+1

|x |n

np
=

1

|x |

(
1 +

1

n

)
→ 1

|x |
as n →∞

Since 1
|x | < 1, by Alembert’s Rule,

lim
n→∞

np

xn
= 0, |x | > 1.
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Some Important Limits: 6

lim
n→∞

ln n

n
= 0.

Proof.

0 ≤ ln n

n
=

1

n

∫ n

1

dt

t
≤ 1

n

∫ n

1

dt√
t

=
2√
n
(
√

n − 1) → 0 as n → 0.

By the pinching theorem, lim
n→∞

ln n

n
= 0.

lim
n→∞

n
1
n = 1.

Proof.

lim
n→∞

n
1
n = lim

n→∞
e

ln n
n = lim

u→0
eu = e0 = 1.
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By L’Hôpital’s Rule (10.5),

lim
n→∞

ln n

nα
= lim

u→∞

ln u

uα
= lim

u→∞

u−1

αuα−1
= lim

u→∞

1

αuα
= 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 18 March 13, 2008 13 / 15



Limit of Sequence Some Limits Some Limits

Some Important Limits: 8

lim
n→∞

n ln

(
1 +

x

n

)
= x .

Proof.

lim
n→∞

n ln

(
1 +

x

n

)
= x lim

n→∞

[
ln

(
1 + x

n

)
− ln 1

x
n

]

= x lim
h→0

[
ln(1 + h)− ln 1

h

]
= x lim

h→0

[
ln(u + h)− ln u

h

]
u=1

= x(ln u)′u=1 = x
1

u
|u=1 = x .
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lim
n→∞

n ln

(
1+

x

n

)
= lim

u→∞

ln(1 + x/u)

1/u
= lim

u→∞

1/(1 + x/u)(−x/u2)

−1/u2
= x .

lim
n→∞

(
1 +

x

n

)n

= ex .

Proof.

lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

en ln
(
1+ x

n

)
= lim

u→x
eu = ex .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 18 March 13, 2008 14 / 15



Limit of Sequence Some Limits Some Limits

Some Important Limits: 8

lim
n→∞

n ln

(
1 +

x

n

)
= x .

Proof.

Alternative proof is done by L’Hôpital’s Rule (10.5),
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