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Oéinn:7 — <L = —:—(ﬁ—l)HOaanO.
n n)i t ~—nJi Vt /n
I
By the pinching theorem, lim S 0.
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lim nIn(l—i—X)_x. ’
n—oo n

Alternative proof is done by L'Hépital’s Rule (10.5),
In(1 1/(1 _ 2
i n|n(1+X> _ e @ x/u) L1/ xfu)(ox/e?)
n u—

moc 1/u " u—oo —1/u2

n
lim <1 + X) = ¥,
n—oo n

n—0o0

n
lim (1—1— X) = lim e”'"(1+§) = lim e" = e*. [l]l

n—oo u—Xx

Jiwen He, University of Houston
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