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1 Limit of Sequence

1.1 Properties of Limits

Properties of Limits

Properties of Limits: 1
Let lim

n→∞
an = L and lim

n→∞
bn = M . Then

• lim
n→∞

can = cL

• lim
n→∞

(an + bn) = L + M

• lim
n→∞

anbn = LM

• lim
n→∞

an

bn
=

L

M
for M 6= 0.

• lim
n→∞

f(an) = f(L) for f being continuous at L.

Example 1. If lim
n→∞

an = L, then lim
n→∞

bn = eL where bn = ean .

Limit of Sequence Defined by Rational Function
Properties of Limits
Let an = αpn

p +αp−1n
p−1 + · · ·+α0 with αp 6= 0, and bn = βqn

q +βq−1n
q−1 +

· · ·+ β0 with βq 6= 0. Then

• If p < q, then lim
n→∞

an

bn
= 0.

• If p = q, then lim
n→∞

an

bn
=

αp

βq
.

• If p > q, then lim
n→∞

an

bn
does not exist, and the sequence

an

bn
diverges.
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Example 2.

lim
n→∞

3n4 − 2n2 + 1
n5 − 3n3

= 0. lim
n→∞

1− 4n7

n7 + 12n
= −4.

lim
n→∞

n4 − 3n2 + n + 2
n3 + 7n

does not exist.

Pinching Theorem
Pinching Theorem
Suppose that for all n greater than some integer N ,

an ≤ bn ≤ cn.

If lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Suppose that |bn| ≤ an, ∀n > N for some N . If an → 0, then bn → 0.

Example 3.
cosn

n
→ 0, since

∣∣∣∣cosnn

∣∣∣∣ ≤ 1
n

and
1
n
→ 0.

2 Some Important Limits

2.1 Some Limits

Some Important Limits: 1

lim
n→∞

1
nα

= 0, α > 0.

Proof.
∀α > 0, ∃p ∈ N s.t. 1/p < α. Then

0 <
1

nα
=

(
1
n

)α

<

(
1
n

)1/p

Since 1
n → 0 and f(u) = u1/p is continuous at 0, we have

lim
n→∞

(
1
n

)1/p

= lim
n→∞

(
1
n

)1/p

= lim
u→0

u1/p = 01/p = 0.

By the pinching theorem,
lim

n→∞

1
nα

= 0, α > 0.

Some Important Limits: 2

lim
n→∞

x
1
n = 1, x > 0.

Proof.
Note that ∀x,

ln
(
x

1
n

)
=

1
n

lnx → 0, as n →∞.
Since f(u) = eu is continuous at 0, we have

lim
n→∞

x
1
n = lim

n→∞
e

1
n ln x = lim

u→0
eu = e0 = 1.
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Some Important Limits: 3

lim
n→∞

xn = 0 if |x| < 1.

(The limit does not exist if |x| > 1 or x = −1.)

Proof.
Note that for any x s.t. 0 < |x| < 1, we have ln |x| < 0 and

ln (|x|n) = n ln |x| → −∞, as n →∞.

Since lim
u→−∞

eu = 0, we have

lim
n→∞

|xn| = lim
n→∞

|x|n = lim
n→∞

en ln |x| = lim
u→−∞

eu = 0.

Therefore, lim
n→∞

xn = 0 if |x| < 1.

(The sequence xn, |x| > 1, is unbounded, thus divergent.)

Some Important Limits: 3

lim
n→∞

xn = 0 if |x| < 1.

(The limit does not exist if |x| > 1 or x = −1.)

Proof.
Note that for any x s.t. 0 < |x| < 1, we have ln |x| < 0 and

ln (|x|n) = n ln |x| → −∞, as n →∞.

Since lim
u→−∞

eu = 0, we have

lim
n→∞

|xn| = lim
n→∞

|x|n = lim
n→∞

en ln |x| = lim
u→−∞

eu = 0.

Since −|xn| ≤ xn ≤ |xn|, by the pinching theorem, we have
lim

n→∞
xn = 0 if |x| < 1.

(The sequence xn, |x| > 1, is unbounded, thus divergent.)

Alembert’s Rule
Alembert’s Rule

Let (an)∞n=1, an 6= 0 ∀n such that lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ. If ρ < 1, then the sequence

(an)∞n=1 converges to 0, and, if ρ > 1, it diverges.

Proof. (ρ < 1)

Since 0 <
1 + ρ

2
< 1, lim

n→∞

(
1 + ρ

2

)n

= 0. Since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ, ∃N1 s.t.

∀n > N1,
∣∣∣∣an+1

an

∣∣∣∣ ≤ ρ +
1− ρ

2
, thus |an+1| ≤

1 + ρ

2
|an|. Then, for n > N1,
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|an| ≤
1 + ρ

2
|an−1| ≤

(
1 + ρ

2

)2

|an−2| ≤ · · · ≤
(

1 + ρ

2

)n−N1

|aN1 |

and therefore limn→∞ |an| = 0. Since −|an| ≤ an ≤ |an|, by the pinching
theorem, we have limn→∞ an = 0.

Proof. (ρ > 1)

∃δ > 0 s.t. ρ > 1+δ. Since lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = ρ, ∃N2 s.t. ∀n > N2,
∣∣∣∣an+1

an

∣∣∣∣ ≥ ρ− δ

2
.

As ρ− δ

2
> 1 +

δ

2
, |an+1| ≥

(
1 +

δ

2

)
|an|. Then, for n > N1,

|an| ≥
(

1 +
δ

2

)
|an−1| ≥

(
1 +

δ

2

)2

|an−2| ≥ · · · ≥
(

1 +
δ

2

)n−N2

|aN2 |

and therefore (an) is unbounded, thus divergent.

Some Important Limits: 4

lim
n→∞

xn

n!
= 0.

Proof.
Note that

∣∣∣∣an+1

an

∣∣∣∣ =
|x|n+1

(n + 1)!
n!
|x|n

=
|x|

n + 1
→ 0 as n →∞

By Alembert’s Rule,
lim

n→∞

xn

n!
= 0.

Some Important Limits: 5

lim
n→∞

np

xn
= 0, |x| > 1.

Proof.
Note that ∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)p

|x|n+1

|x|n

np
=

1
|x|

(
1 +

1
n

)
→ 1

|x|
as n →∞

Since 1
|x| < 1, by Alembert’s Rule,

lim
n→∞

np

xn
= 0, |x| > 1.
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Some Important Limits: 6

lim
n→∞

lnn

n
= 0.

Proof.

0 ≤ lnn

n
=

1
n

∫ n

1

dt

t
≤ 1

n

∫ n

1

dt√
t

=
2√
n

(
√

n− 1) → 0 as n → 0.

By the pinching theorem, lim
n→∞

lnn

n
= 0. Alternative proof is done by L’Hôpital’s

Rule (10.5),
lim

n→∞

lnn

n
= lim

u→∞

lnu

u
= lim

u→∞

1
u

1
= 0.

lim
n→∞

n
1
n = 1.

Proof.

lim
n→∞

n
1
n = lim

n→∞
e

ln n
n = lim

u→0
eu = e0 = 1.

Some Important Limits: 7

lim
n→∞

lnn

nα
= 0, α > 0.

Proof.
By L’Hôpital’s Rule (10.5),

lim
n→∞

lnn

nα
= lim

u→∞

lnu

uα
= lim

u→∞

u−1

αuα−1
= lim

u→∞

1
αuα

= 0.

Some Important Limits: 8

lim
n→∞

n ln
(

1 +
x

n

)
= x.

Proof.

lim
n→∞

n ln
(

1 +
x

n

)
= x lim

n→∞

[
ln

(
1 + x

n

)
− ln 1

x
n

]

= x lim
h→0

[
ln(1 + h)− ln 1

h

]
= x lim

h→0

[
ln(u + h)− lnu

h

]
u=1

= x(lnu)′u=1 = x
1
u
|u=1 = x.

Alternative proof is done by L’Hôpital’s Rule (10.5),
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lim
n→∞

n ln
(

1 +
x

n

)
= lim

u→∞

ln(1 + x/u)
1/u

= lim
u→∞

1/(1 + x/u)(−x/u2)
−1/u2

= x.

lim
n→∞

(
1 +

x

n

)n

= ex.

Proof.

lim
n→∞

(
1 +

x

n

)n

= lim
n→∞

en ln
(
1+ x

n

)
= lim

u→x
eu = ex.

Outline
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