Lecture 18Section 10.3 Limit of Sequence Section 10.4 Some Important Limits

Jiwen He

1 Limit of Sequence

1.1 Properties of Limits

Properties of Limits

Properties of Limits: 1
Let $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$. Then

- $\lim _{n \rightarrow \infty} c a_{n}=c L$
- $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M$
- $\lim _{n \rightarrow \infty} a_{n} b_{n}=L M$
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$ for $M \neq 0$.
- $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$ for f being continuous at L.

Example 1. If $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=e^{L}$ where $b_{n}=e^{a_{n}}$.
Limit of Sequence Defined by Rational Function
Properties of Limits
Let $a_{n}=\alpha_{p} n^{p}+\alpha_{p-1} n^{p-1}+\cdots+\alpha_{0}$ with $\alpha_{p} \neq 0$, and $b_{n}=\beta_{q} n^{q}+\beta_{q-1} n^{q-1}+$ $\cdots+\beta_{0}$ with $\beta_{q} \neq 0$. Then

- If $p<q$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$.
- If $p=q$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\alpha_{p}}{\beta_{q}}$.
- If $p>q$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ does not exist, and the sequence $\frac{a_{n}}{b_{n}}$ diverges.

Example 2.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3 n^{4}-2 n^{2}+1}{n^{5}-3 n^{3}}=0 . \quad \lim _{n \rightarrow \infty} \frac{1-4 n^{7}}{n^{7}+12 n}=-4 . \\
& \lim _{n \rightarrow \infty} \frac{n^{4}-3 n^{2}+n+2}{n^{3}+7 n} \text { does not exist. }
\end{aligned}
$$

Pinching Theorem
Pinching Theorem
Suppose that for all n greater than some integer N,

$$
a_{n} \leq b_{n} \leq c_{n}
$$

If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\lim _{n \rightarrow \infty} b_{n}=L$.
Suppose that $\left|b_{n}\right| \leq a_{n}, \forall n>N$ for some N. If $a_{n} \rightarrow 0$, then $b_{n} \rightarrow 0$.
Example 3.

$$
\frac{\cos n}{n} \rightarrow 0, \quad \text { since }\left|\frac{\cos n}{n}\right| \leq \frac{1}{n} \text { and } \frac{1}{n} \rightarrow 0
$$

2 Some Important Limits

2.1 Some Limits

Some Important Limits: 1

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}=0, \quad \alpha>0
$$

Proof.

$\forall \alpha>0, \exists p \in \mathbb{N}$ s.t. $1 / p<\alpha$. Then

$$
0<\frac{1}{n^{\alpha}}=\left(\frac{1}{n}\right)^{\alpha}<\left(\frac{1}{n}\right)^{1 / p}
$$

Since $\frac{1}{n} \rightarrow 0$ and $f(u)=u^{1 / p}$ is continuous at 0 , we have

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / p}=\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{1 / p}=\lim _{u \rightarrow 0} u^{1 / p}=0^{1 / p}=0
$$

By the pinching theorem,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}}=0, \quad \alpha>0
$$

Some Important Limits: 2

$$
\lim _{n \rightarrow \infty} x^{\frac{1}{n}}=1, \quad x>0
$$

Proof.
Note that $\forall x$,

$$
\ln \left(x^{\frac{1}{n}}\right)=\frac{1}{m} \ln x \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Since $f(u)=e^{u}$ is continuous at $\frac{n}{0}$, we have

$$
\lim _{n \rightarrow \infty} x^{\frac{1}{n}}=\lim _{n \rightarrow \infty} e^{\frac{1}{n} \ln x}=\lim _{u \rightarrow 0} e^{u}=e^{0}=1
$$

Some Important Limits: 3

$$
\lim _{n \rightarrow \infty} x^{n}=0 \quad \text { if }|x|<1
$$

(The limit does not exist if $|x|>1$ or $x=-1$.)

Proof.

Note that for any x s.t. $0<|x|<1$, we have $\ln |x|<0$ and

$$
\ln \left(|x|^{n}\right)=n \ln |x| \rightarrow-\infty, \quad \text { as } n \rightarrow \infty
$$

Since $\lim _{u \rightarrow-\infty} e^{u}=0$, we have

$$
\lim _{n \rightarrow \infty}\left|x^{n}\right|=\lim _{n \rightarrow \infty}|x|^{n}=\lim _{n \rightarrow \infty} e^{n \ln |x|}=\lim _{u \rightarrow-\infty} e^{u}=0
$$

Therefore,

$$
\lim _{n \rightarrow \infty} x^{n}=0 \quad \text { if }|x|<1
$$

(The sequence $x^{n},|x|>1$, is unbounded, thus divergent.)

Some Important Limits: 3

$$
\lim _{n \rightarrow \infty} x^{n}=0 \quad \text { if }|x|<1
$$

(The limit does not exist if $|x|>1$ or $x=-1$.)
Proof.
Note that for any x s.t. $0<|x|<1$, we have $\ln |x|<0$ and

$$
\ln \left(|x|^{n}\right)=n \ln |x| \rightarrow-\infty, \quad \text { as } n \rightarrow \infty
$$

Since $\lim _{u \rightarrow-\infty} e^{u}=0$, we have

$$
\lim _{n \rightarrow \infty}\left|x^{n}\right|=\lim _{n \rightarrow \infty}|x|^{n}=\lim _{n \rightarrow \infty} e^{n \ln |x|}=\lim _{u \rightarrow-\infty} e^{u}=0
$$

Since $-\left|x^{n}\right| \leq x^{n} \leq\left|x^{n}\right|$, by the pinching theorem, we have

$$
\lim _{n \rightarrow \infty} x^{n}=0 \quad \text { if }|x|<1
$$

(The sequence $x^{n},|x|>1$, is unbounded, thus divergent.)

Alembert's Rule

Alembert's Rule

Let $\left(a_{n}\right)_{n=1}^{\infty}, a_{n} \neq 0 \forall n$ such that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho$. If $\rho<1$, then the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges to 0 , and, if $\rho>1$, it diverges.

Proof. $(\rho<1)$
Since $0<\frac{1+\rho}{2}<1, \lim _{n \rightarrow \infty}\left(\frac{1+\rho}{2}\right)^{n}=0$. Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho, \exists N_{1}$ s.t.
$\forall n>N_{1},\left|\frac{a_{n+1}}{a_{n}}\right| \leq \rho+\frac{1-\rho}{2}$, thus $\left|a_{n+1}\right| \leq \frac{1+\rho}{2}\left|a_{n}\right|$. Then, for $n>N_{1}$,

$$
\left|a_{n}\right| \leq \frac{1+\rho}{2}\left|a_{n-1}\right| \leq\left(\frac{1+\rho}{2}\right)^{2}\left|a_{n-2}\right| \leq \cdots \leq\left(\frac{1+\rho}{2}\right)^{n-N_{1}}\left|a_{N_{1}}\right|
$$

and therefore $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$. Since $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right|$, by the pinching theorem, we have $\lim _{n \rightarrow \infty} a_{n}=0$.

Proof. ($\rho>1$)
$\exists \delta>0$ s.t. $\rho>1+\delta$. Since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\rho, \exists N_{2}$ s.t. $\forall n>N_{2},\left|\frac{a_{n+1}}{a_{n}}\right| \geq \rho-\frac{\delta}{2}$.
As $\rho-\frac{\delta}{2}>1+\frac{\delta}{2},\left|a_{n+1}\right| \geq\left(1+\frac{\delta}{2}\right)\left|a_{n}\right|$. Then, for $n>N_{1}$,

$$
\left|a_{n}\right| \geq\left(1+\frac{\delta}{2}\right)\left|a_{n-1}\right| \geq\left(1+\frac{\delta}{2}\right)^{2}\left|a_{n-2}\right| \geq \cdots \geq\left(1+\frac{\delta}{2}\right)^{n-N_{2}}\left|a_{N_{2}}\right|
$$

and therefore $\left(a_{n}\right)$ is unbounded, thus divergent.

Some Important Limits: 4

$$
\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0
$$

Proof.
Note that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{|x|^{n+1}}{(n+1)!} \frac{n!}{|x|^{n}}=\frac{|x|}{n+1} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

By Alembert's Rule, $\quad \lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$.

Some Important Limits: 5

$$
\lim _{n \rightarrow \infty} \frac{n^{p}}{x^{n}}=0, \quad|x|>1
$$

Proof.
Note that

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(n+1)^{p}}{|x|^{n+1}} \frac{|x|^{n}}{n^{p}}=\frac{1}{|x|}\left(1+\frac{1}{n}\right) \rightarrow \frac{1}{|x|} \quad \text { as } n \rightarrow \infty
$$

Since $\frac{1}{|x|}<1$, by Alembert's Rule,

$$
\lim _{n \rightarrow \infty} \frac{n^{p}}{x^{n}}=0, \quad|x|>1
$$

Some Important Limits: 6

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0 .
$$

Proof.

$$
0 \leq \frac{\ln n}{n}=\frac{1}{n} \int_{1}^{n} \frac{d t}{t} \leq \frac{1}{n} \int_{1}^{n} \frac{d t}{\sqrt{t}}=\frac{2}{\sqrt{n}}(\sqrt{n}-1) \rightarrow 0 \text { as } n \rightarrow 0
$$

By the pinching theorem, $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$. Alternative proof is done by L'Hôpital's Rule (10.5),

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\ln n}{n}=\lim _{u \rightarrow \infty} \frac{\ln u}{u}=\lim _{u \rightarrow \infty} \frac{\frac{1}{u}}{1}=0 . \\
\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1 .
\end{gathered}
$$

Proof.

$$
\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=\lim _{n \rightarrow \infty} e^{\frac{\ln n}{n}}=\lim _{u \rightarrow 0} e^{u}=e^{0}=1
$$

Some Important Limits: 7

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\alpha}}=0, \quad \alpha>0
$$

Proof.
By L'Hôpital's Rule (10.5),

$$
\lim _{n \rightarrow \infty} \frac{\ln n}{n^{\alpha}}=\lim _{u \rightarrow \infty} \frac{\ln u}{u^{\alpha}}=\lim _{u \rightarrow \infty} \frac{u^{-1}}{\alpha u^{\alpha-1}}=\lim _{u \rightarrow \infty} \frac{1}{\alpha u^{\alpha}}=0 .
$$

Some Important Limits: 8

$$
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{x}{n}\right)=x
$$

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{x}{n}\right) & =x \lim _{n \rightarrow \infty}\left[\frac{\ln \left(1+\frac{x}{n}\right)-\ln 1}{\frac{x}{n}}\right] \\
& =x \lim _{h \rightarrow 0}\left[\frac{\ln (1+h)-\ln 1}{h}\right] \\
& =x \lim _{h \rightarrow 0}\left[\frac{\ln (u+h)-\ln u}{h}\right]_{u=1} \\
& =x(\ln u)_{u=1}^{\prime}=\left.x \frac{1}{u}\right|_{u=1}=x .
\end{aligned}
$$

Alternative proof is done by L'Hôpital's Rule (10.5),

$$
\begin{gathered}
\lim _{n \rightarrow \infty} n \ln \left(1+\frac{x}{n}\right)=\lim _{u \rightarrow \infty} \frac{\ln (1+x / u)}{1 / u}=\lim _{u \rightarrow \infty} \frac{1 /(1+x / u)\left(-x / u^{2}\right)}{-1 / u^{2}}=x . \\
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}
\end{gathered}
$$

Proof.

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{x}{n}\right)}=\lim _{u \rightarrow x} e^{u}=e^{x}
$$

Outline

Contents

1 Limit of Sequence 1
1.1 Properties of Limits . 1

2 Some Limits 2
2.1 Some Limits . 2

