${f Lecture~22}$ Section 11.2 The Integral Test; Comparison Tests

Jiwen He

1 The Integral Test

The Integral Test

The Integral Test

Let $a_k = f(k)$, where f is continuous, decreasing and positive on $[1, \infty)$, then

$$\sum_{k=1}^{\infty} a_k \text{ converges} \quad \text{iff} \quad \int_1^{\infty} f(x) dx \text{ converges}$$

Since f decreases on $[1,\infty)$ $\sum_{k=2}^{n} a_k < \int_1^n f(x)dx < \sum_{k=1}^{n-1} a_k$. Since f is positive on $[1,\infty)$, $\sum_{k=2}^{\infty} a_k \leq \int_1^{\infty} f(x)dx \leq \sum_{k=1}^{\infty} a_k$. Therefore, either both converge or both diverge.

1.2 Applying the Integral Test

The p-Sereis

(The p-Sereis)

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots \text{ converges} \quad iff \quad p > 1.$$

Proof.

$$\sum_{k=1}^{\infty} \frac{1}{k^p} \text{ converges} \quad \text{iff} \quad \int_1^{\infty} \frac{1}{x^p} dx \text{ converges}.$$

We know that

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ converges} \quad \text{iff} \quad p > 1.$$

We know that
$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ converges} \quad \textit{iff} \quad p > 1.$$
 It follows that
$$\sum_{k=1}^{\infty} \frac{1}{k^{p}} \text{ converges} \quad \textit{iff} \quad p > 1.$$

Example (p = 1): Harmonic Series

(The p-Sereis)

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots \text{ converges} \quad iff \quad p > 1.$$

Harmonic Series (p = 1)

When p = 1, this is the harmonic series

$$\sum_{k=1}^{\infty} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \cdots,$$

and the related improper integral is

$$\int_{1}^{\infty} \frac{1}{x} dx = \ln x \Big|_{1}^{\infty} = \lim_{x \to \infty} \ln x = \infty.$$

Since this improper integral diverges, so does the harmonic series.

Example (p=2)

(The p-Sereis)

$$\sum_{k=1}^{\infty} \frac{1}{k^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots \text{ converges} \quad \text{iff} \quad p > 1.$$

(p=2)

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

$$\int_{1}^{\infty} \frac{1}{x^2} dx = -x^{-1} \Big|_{1}^{\infty} = 1 - \lim_{x \to \infty} x^{-1} = 1$$

When
$$p = 2$$
, this is
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots,$$
 and the related improper integral is
$$\int_{1}^{\infty} \frac{1}{x^2} dx = -x^{-1} \Big|_{1}^{\infty} = 1 - \lim_{x \to \infty} x^{-1} = 1.$$
 By the integral test,
$$\sum_{k=1}^{\infty} \frac{1}{k^2} = 1 + \sum_{k=2}^{\infty} \frac{1}{k^2} \le 1 + \int_{1}^{\infty} \frac{1}{x^2} dx = 2$$

Show that $\sum_{k=0}^{\infty} \frac{1}{k \ln k}$ diverges.

The related improper integral is
$$\int_2^\infty \frac{1}{x \ln x} \, dx = \int_{\ln 2}^\infty \frac{1}{u} \, du = \ln u \Big|_{\ln 2}^\infty = \lim_{x \to \infty} \ln x - \ln \ln 2 = \infty.$$
 Since this improper integral diverges, so does the infinite series.

Show that $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$ converges.

The related improper integral is $\int_2^\infty \frac{1}{x(\ln x)^2} \, dx = \int_{\ln 2}^\infty \frac{1}{u^2} \, du = -u^{-1} \big|_{\ln 2}^\infty = \frac{1}{\ln 2} - \lim_{x \to \infty} x^{-1} = \frac{1}{\ln 2}.$ Since this improper integral $\emph{diverges}$, so does the infinite series.

The Integral Test for the *n*th Remainder $\sum_{i=1}^{\infty} a_{i}$, n > 1

Let
$$a_k = f(k)$$
, where \pounds is continuous, decreasing and positive on $[n, \infty)$, then
$$\sum_{k=n+1}^{\infty} a_k \leq \int_n^{\infty} f(x) dx \leq a_n + \sum_{k=n+1}^{\infty} a_k$$
 or equivalently
$$\int_{n+1}^{\infty} f(x) dx \leq \sum_{k=n+1}^{\infty} a_k \leq \int_n^{\infty} f(x) dx$$

Let $\sum_{k=1}^{\infty} a_k$ be convergent. Its *nth remainder* is defined as

$$R_n = \sum_{k=n+1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k = \sum_{k=1}^{\infty} a_k - s_n$$

Let $\sum_{k=1}^{\infty} a_k$ be convergent, so do $\int_1^{\infty} f(x) dx$. Then, $\forall \epsilon > 0$, $\exists N$ s.t. for n > N, $\int_n^{\infty} f(x) dx < \epsilon$, and

$$0 < R_n = \sum_{k=n+1}^{\infty} a_k = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k < \epsilon$$

Example

Use a partial sum to approximate $\sum_{k=1}^{\infty} \frac{1}{k^2 + 1}$ with an error < 0.01

Estimating the nth remainder of the series
$$R_n = \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} - \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} < \int_n^{\infty} \frac{1}{x^2 + 1} dx$$
$$= \tan^{-1} x \big|_n^{\infty} = \frac{\pi}{2} - \tan^{-1} n.$$

For $\frac{\pi}{2} - \tan^{-1} n < 0.01$, we need $n \ge \tan(\frac{\pi}{2} - 0.01) \approx 100$.

$$s_n = \sum_{k=1}^n \frac{1}{k^2 + 1} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \dots + \frac{1}{10001} = 1.066\dots$$

Therefore

$$1.066 \dots < \sum_{k=1}^{\infty} \frac{1}{k^2 + 1} < 1.076 \dots$$

1.3 Comparison Tests

Basic Series that Converge or Diverge

$$\sum_{k=1}^{\infty} a_k \text{ converges} \quad \text{iff} \quad \sum_{k=j}^{\infty} a_k \text{ converges}, \forall j \geq 1.$$

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write $\sum a_k$.

Basic Series that Converge

Geometric series:
$$\sum x^k$$
, if $|x| < 1$
p-series: $\sum \frac{1}{k^p}$, if $p > 1$

Basic Series that Diverge

Any series
$$\sum a_k$$
 for which $\lim_{k\to\infty}a_k\neq 0$
p-series: $\sum \frac{1}{k^p}$, if $p\leq 1$

Basic Comparison Test

Basic Comparison Test

Suppose that $0 \le a_k \le b_k$ for sufficiently large k.

If
$$\sum b_k$$
 converges, then so does $\sum a_k$.
If $\sum a_k$ diverges, then so does $\sum b_k$.

Comparison with p-Series

$$\sum a_k \text{ converges if } 0 \le a_k \le \frac{c}{k^p}, \quad p > 1.$$

$$\sum a_k \text{ diverges if } 0 \le \frac{c}{k^p} \le a_k, \quad p \le 1.$$

Comparison with Geometric Series

$$\sum a_k$$
 converges if $0 \le a_k \le c x^k$, $|x| < 1$.

Examples
$$\sum \frac{1}{2k^3+1} \text{ converges by comparison with } \sum \frac{1}{k^3}$$

$$\frac{1}{2k^3+1} < \frac{1}{k^3} \quad \text{and} \quad \sum \frac{1}{k^3} \text{ converges.}$$

$$\sum \frac{k^3}{k^5 + 4k^4 + 7}$$
 converges by comparison with
$$\sum \frac{1}{k^2}$$

$$\frac{k^3}{k^5 + 4k^4 + 7} < \frac{k^3}{k^5} = \frac{1}{k^2}$$
 and
$$\sum \frac{1}{k^2}$$
 converges.

$$\sum \frac{1}{k^3 - k^2}$$
 converges by comparison with
$$\sum \frac{2}{k^3}$$

$$\frac{1}{k^3 - k^2} < \frac{1}{k^3 - k^3/2} = \frac{2}{k^3}, \ k \ge 2, \quad \text{and} \quad \sum \frac{2}{k^3}$$
 converges.

Examples
$$\sum \frac{1}{3k+1} \text{ diverges by comparison with } \sum \frac{1}{3(k+1)}$$

$$\frac{1}{3k+1} > \frac{1}{3(k+1)} \quad \text{and} \quad \frac{1}{3} \sum \frac{1}{k+1} \text{ diverges.}$$

$$\sum \frac{1}{\ln(k+6)}$$
 diverges by comparison with $\sum \frac{1}{k+6}$

$$\frac{\ln(k+6)}{k+6} \to 0 \text{ as } k \to \infty, \quad \ln(k+6) < k+6 \text{ for } k \text{ large}$$

$$\frac{1}{\ln(k+6)} > \frac{1}{k+6} \text{ for } k \text{ large} \quad \text{and} \quad \sum \frac{1}{k+6} \text{ diverges.}$$

Limit Comparison Test

Basic Comparison Test Suppose that $a_k > 0$ and $b_k > 0$ for sufficiently large k, and that $\lim_{k \to \infty} \frac{a_k}{b_k} = L$

for some L > 0.

$$\sum a_k$$
 converges iff $\sum b_k$ converges.

$$\lim_{k\to\infty}\frac{a_k}{b_k}=L \text{ means that } a_k\approx Lb_k \text{ for large } k$$

If
$$\lim_{k\to\infty} \frac{a_k}{b_k} = 0$$
, and

if
$$\sum b_k$$
 converges, then $\sum a_k$ converges.

If
$$\lim_{k\to\infty} \frac{a_k}{b_k} = \infty$$
, and

if
$$\sum a_k$$
 converges, then $\sum b_k$ converges.

Example

$$\sum \frac{1}{k^3-1}$$
 converges by comparison with $\sum \frac{1}{k^3}$.

For large k, $\frac{1}{k^3-1}$ differs little from $\frac{1}{k^3}$.

$$\frac{1}{k^3 - 1} \div \frac{1}{k^3} = \frac{k^3}{k^3 - 1} \to 1 \text{ as } k \to \infty$$

and

$$\sum \frac{1}{k^3}$$
 converges.

Example

$$\sum \frac{3k^2+2k+1}{k^3+1}$$
 diverges by comparison with $\sum \frac{3}{k}$

For large
$$k$$
, $\frac{3k^2+2k+1}{k^3+1}$ differs little from $\frac{3k^2}{k^3}=\frac{3}{k}$.

$$\frac{3k^2 + 2k + 1}{k^3 + 1} \div \frac{3}{k} = \frac{3k^3 + 2k^2 + k}{3k^3 + 3} \to 1 \text{ as } k \to \infty$$

and

$$\sum \frac{3}{k}$$
 diverges.

Example

$$\sum \frac{5\sqrt{k}+100}{2k^2\sqrt{k}-9\sqrt{k}}$$
 converges by comparison with
$$\sum \frac{5}{2k^2}$$

For large
$$k$$
, $\frac{5\sqrt{k}+100}{2k^2\sqrt{k}-9\sqrt{k}}$ differs little from $\frac{5\sqrt{k}}{2k^2\sqrt{k}}=\frac{5}{2k^2}$.

$$\frac{5\sqrt{k}+100}{2k^2\sqrt{k}-9\sqrt{k}} \div \frac{5}{2k^2} = \frac{10k^2\sqrt{k}+200k^2}{10k^2\sqrt{k}-45\sqrt{k}} \to 1 \text{ as } k \to \infty$$

and

$$\sum \frac{5}{2k^2}$$
 converges.

Outline

Contents

1	Integral Test		
	1.1	Integral Test	1
	1.2	Application	1
	1.2	Comparison Tosts	3