# Lecture 23 Section 11.3 The Root Test; The Ratio Test

#### Jiwen He

Department of Mathematics, University of Houston

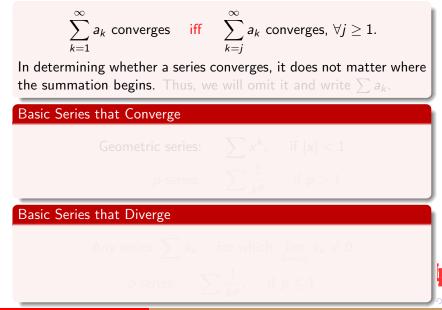
jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432



Jiwen He, University of Houston





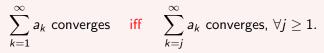


Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

2 / 14



In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge



#### Basic Series that Diverge

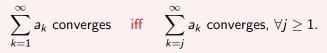
series  $\sum a_k$  for which lim  $a_k 
eq 0$ 

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

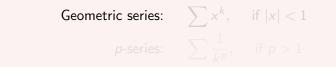
April 8, 2008

2 / 14



In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge



#### Basic Series that Diverge

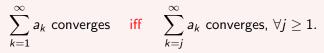
eries  $\sum a_k$  for which lim  $a_k 
eq 0$ 

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

2 / 14



In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge



#### Basic Series that Diverge

ny series  $\sum a_k$  for which  $\lim_{k \to \infty} a_k 
eq 0$ 

Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k$$
 converges iff  $\sum_{k=j}^{\infty} a_k$  converges,  $\forall j \ge 1$ .

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge



#### Basic Series that Diverge

ny series  $\sum a_k$  for which  $\lim_{k o\infty}a_k
eq$ 

Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k$$
 converges iff  $\sum_{k=j}^{\infty} a_k$  converges,  $\forall j \ge 1$ .

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge

#### Basic Series that Diverge



Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k ext{ converges} \quad ext{iff} \quad \sum_{k=j}^{\infty} a_k ext{ converges}, \ orall j \geq 1.$$

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge

Geometric series: 
$$\sum x^k$$
, if  $|x| < 1$   
*p*-series:  $\sum \frac{1}{k^p}$ , if  $p > 1$ 

#### Basic Series that Diverge

Any series 
$$\sum a_k$$
 for which  $\lim_{k \to \infty} a_k \neq 0$ 

Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k ext{ converges} \quad ext{iff} \quad \sum_{k=j}^{\infty} a_k ext{ converges}, \ orall j \geq 1.$$

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge

Geometric series: 
$$\sum x^k$$
, if  $|x| < 1$   
*p*-series:  $\sum \frac{1}{k^p}$ , if  $p > 1$ 

## Basic Series that Diverge

Any series 
$$\sum a_k$$
 for which  $\lim_{k \to \infty} a_k \neq 0$ 

Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k ext{ converges} \quad ext{iff} \quad \sum_{k=j}^{\infty} a_k ext{ converges}, \ orall j \geq 1.$$

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge

## Basic Series that Diverge

Any series 
$$\sum a_k$$
 for which  $\lim_{k \to \infty} a_k \neq 0$   
*p*-series:  $\sum \frac{1}{kp}$ , if  $p \leq 1$ 

Jiwen He, University of Houston

$$\sum_{k=1}^{\infty} a_k$$
 converges iff  $\sum_{k=j}^{\infty} a_k$  converges,  $\forall j \ge 1$ .

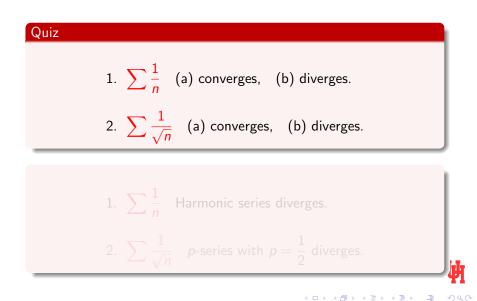
In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write  $\sum a_k$ .

## Basic Series that Converge

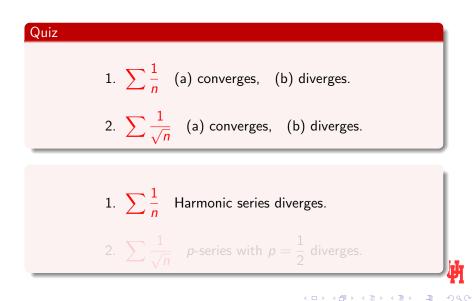
#### Basic Series that Diverge

Any series 
$$\sum a_k$$
 for which  $\lim_{k\to\infty} a_k \neq 0$   
*p*-series:  $\sum \frac{1}{k^p}$ , if  $p \leq 1$ 

Jiwen He, University of Houston

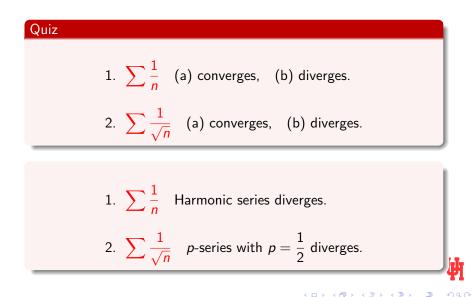


Jiwen He, University of Houston



Jiwen He, University of Houston

April 8, 2008 3 / 1



Jiwen He, University of Houston

April 8, 2008 3 / 1

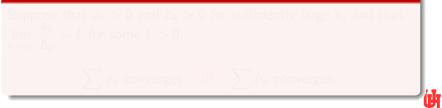
## Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

If 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ 

 $^{z}\sum a_{k}$  diverges, then so does  $\sum b_{k}$ 

## Limit Comparison Test





A (10) < A (10) </p>

## Basic Comparison Test

## Suppose that $0 \le a_k \le b_k$ for sufficiently large k.



f  $\sum a_k$  diverges, then so does  $\sum b_k$ 

#### Limit Comparison Test



#### Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

f 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ 

 $\sum a_k$  diverges, then so does  $\sum \sum$ 

#### Limit Comparison Test



A (10) F (10)

## Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

If 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ .  
If  $\sum a_k$  diverges, then so does  $\sum b_k$ .

#### Limit Comparison Test

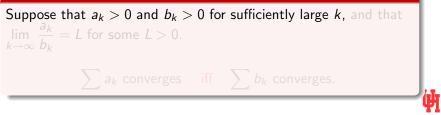


#### Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

If 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ .  
If  $\sum a_k$  diverges, then so does  $\sum b_k$ .

#### Limit Comparison Test



#### Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

If 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ .  
If  $\sum a_k$  diverges, then so does  $\sum b_k$ .

#### Limit Comparison Test

Suppose that  $a_k > 0$  and  $b_k > 0$  for sufficiently large k, and that  $\lim_{k \to \infty} \frac{a_k}{b_k} = L \text{ for some } L > 0.$   $\sum a_k \text{ converges} \quad \text{iff} \quad \sum b_k \text{ converges.}$ 

## Basic Comparison Test

Suppose that  $0 \le a_k \le b_k$  for sufficiently large k.

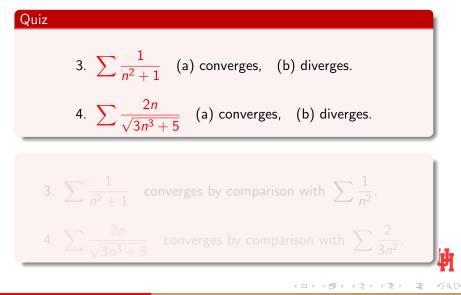
If 
$$\sum b_k$$
 converges, then so does  $\sum a_k$ .  
If  $\sum a_k$  diverges, then so does  $\sum b_k$ .

#### Limit Comparison Test

Suppose that 
$$a_k > 0$$
 and  $b_k > 0$  for sufficiently large  $k$ , and that  

$$\lim_{k \to \infty} \frac{a_k}{b_k} = L \text{ for some } L > 0.$$

$$\sum a_k \text{ converges iff } \sum b_k \text{ converges.}$$



# Quiz 3. $\sum \frac{1}{n^2 + 1}$ (a) converges, (b) diverges. 4. $\sum \frac{2n}{\sqrt{3n^3 + 5}}$ (a) converges, (b) diverges.



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008 5 / 1

イロト 不得下 イヨト イヨト 二日

## Quiz

3. 
$$\sum \frac{1}{n^2 + 1}$$
 (a) converges, (b) diverges.  
4.  $\sum \frac{2n}{\sqrt{3n^3 + 5}}$  (a) converges, (b) diverges.

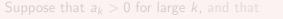
3. 
$$\sum \frac{1}{n^2 + 1}$$
 converges by comparison with  $\sum \frac{1}{n^2}$ .  
4.  $\sum \frac{2n}{\sqrt{3n^3 + 5}}$  converges by comparison with  $\sum \frac{2}{3n^2}$ .

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Comparison Tests Root Test Ratio Test Root Test

# The Root Test: Comparison with Geometric Series

#### Root Test



$$\lim_{\to\infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

#### Comparison with Geometric Series



Comparison Tests Root Test Ratio Test Root Test

# The Root Test: Comparison with Geometric Series

#### Root Test

#### Suppose that $a_k > 0$ for large k, and that

#### Comparison with Geometric Series



Root Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k\to\infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If  $\rho = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series

• If  $\sum a_k$  is a geometric series, e.g.,  $\sum \rho^k$ ,  $\rho > 0$ , then  $(a_k)^{\frac{1}{k}}$  is constant, i.e.,  $\rho$ . If  $\rho < 1$ , then  $\sum a_k$  converges. If  $\rho \ge 1$ , then  $\sum a_k$  diverges.

• If  $\lim_{k o\infty}(a_k)^{ar{k}}=
ho<1$ , then for large  $k,~a_k<\mu^k$  with

1. By the basic comparison test,  $\sum a_k$  converge



Root Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If ho=1, then the test is inconclusive.

## Comparison with Geometric Series

- If ∑ a<sub>k</sub> is a geometric series, e.g., ∑ ρ<sup>k</sup>, ρ > 0, then (a<sub>k</sub>)<sup>†</sup> is constant, i.e., ρ. If ρ < 1, then ∑ a<sub>k</sub> converges. If ρ ≥ 1, then ∑ a<sub>k</sub> diverges.
- If  $\lim_{k \to \infty} (a_k)^{rac{1}{k}} = 
  ho < 1$ , then for large  $k, \; a_k < \mu^k$  with
  - k < 1. By the basic comparison test,  $\sum a_k$  converges



oot Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If ho = 1, then the test is inconclusive.

## Comparison with Geometric Series

If ∑ a<sub>k</sub> is a geometric series, e.g., ∑ ρ<sup>k</sup>, ρ > 0, then (a<sub>k</sub>)<sup>‡</sup> is constant, i.e., ρ. If ρ < 1, then ∑ a<sub>k</sub> converges. If ρ ≥ 1, then ∑ a<sub>k</sub> diverges.

• If  $\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho < 1$ , then for large  $k, a_k < \mu^k$  with

 $p < \mu < 1.$  By the basic comparison test,  $\sum a_k$  converges.



loot Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If  $\rho = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a geometric series, e.g., ∑ ρ<sup>k</sup>, ρ > 0, then (a<sub>k</sub>)<sup>±</sup>/<sub>k</sub> is constant, i.e., ρ. If ρ < 1, then ∑ a<sub>k</sub> converges. If ρ ≥ 1, then ∑ a<sub>k</sub> diverges.

• If  $\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho < 1$ , then for large k,  $a_k < \mu^k$  with  $\rho < \mu < 1$ . By the basic comparison test  $\sum a_k$  converge



April 8, 2008 6 /

oot Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If  $\rho = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a geometric series, e.g., ∑ ρ<sup>k</sup>, ρ > 0, then (a<sub>k</sub>)<sup>1/k</sup> is constant, i.e., ρ. If ρ < 1, then ∑ a<sub>k</sub> converges. If ρ ≥ 1, then ∑ a<sub>k</sub> diverges.

• If  $\lim_{k\to\infty} (a_k)^{\frac{1}{k}} = \rho < 1$ , then for large k,  $a_k < \mu^k$  with  $\rho < \mu < 1$ . By the basic comparison test,  $\sum a_k$  converges.



April 8, 2008 6 /

oot Test

# The Root Test: Comparison with Geometric Series

#### Root Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = \rho \text{ for some } \rho > 0.$$

- If  $\rho < 1$ , then  $\sum a_k$  converges.
- If  $\rho > 1$ , then  $\sum a_k$  diverges.
- If  $\rho = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series

• If  $\sum a_k$  is a geometric series, e.g.,  $\sum \rho^k$ ,  $\rho > 0$ , then  $(a_k)^{\frac{1}{k}}$  is constant, i.e.,  $\rho$ . If  $\rho < 1$ , then  $\sum a_k$  converges. If  $\rho \ge 1$ , then  $\sum a_k$  diverges.

• If 
$$\lim_{k\to\infty} (a_k)^{\frac{1}{k}} = \rho < 1$$
, then for large  $k$ ,  $a_k < \mu^k$  with  $\rho < \mu < 1$ . By the basic comparison test,  $\sum a_k$  converges.



# Examples

 $\sum \frac{k^2}{2^k}$ 



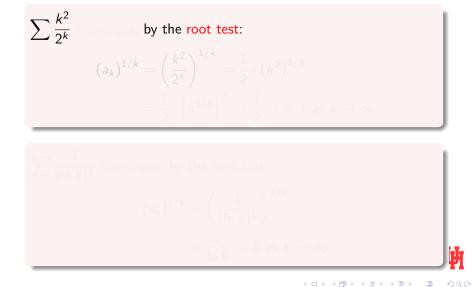
Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

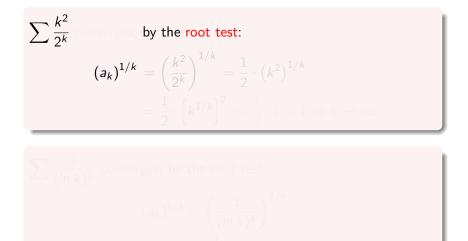
▲ 🗈 🕨 🚊 🥠 April 8, 2008 7 /

<ロ> (日) (日) (日) (日) (日)

## Examples



Jiwen He, University of Houston



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

・ロン ・四 ・ ・ ヨン ・ ヨン

#### Root Test

### Examples

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

 $\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$  $(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$  $= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$ 



Jiwen He, University of Houston

 $\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$   $(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot (k^2)^{1/k}$   $= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \rightarrow \frac{1}{2} \cdot 1 < 1 \text{ as } k \rightarrow \infty$ 



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 2

3

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot (k^2)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:}$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

・ < E ト - 是 - ク April 8, 2008 - 7 /

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot (k^2)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:}$$



Jiwen He, University of Houston

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

| $\sum \frac{1}{(\ln k)^k} \simeq$ | inverges, by the root test:                            |          |
|-----------------------------------|--------------------------------------------------------|----------|
|                                   | $(a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k}$ |          |
|                                   | $=rac{1}{\ln k}	o 0$ as $k	o\infty$                   | <b>#</b> |

Jiwen He, University of Houston

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot (k^2)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \rightarrow \frac{1}{2} \cdot 1 < 1 \text{ as } k \rightarrow \infty$$

 $\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:} \\ (a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k} \\ = \frac{1}{\ln k} \to 0 \text{ as } k \to \infty$ 

Jiwen He, University of Houston

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{(\ln k)^k}$ by the root test:  $(a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k}$  $=rac{1}{\ln k}
ightarrow 0$  as  $k
ightarrow\infty$ h

Jiwen He, University of Houston

∃ →

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot (k^2)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k}$$
$$= \frac{1}{\ln k} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

4

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k}$$
$$= \frac{1}{\ln k} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

4

イロト イヨト イヨト イヨト

呐

$$\sum \frac{k^2}{2^k} \text{ converges, by the root test:}$$

$$(a_k)^{1/k} = \left(\frac{k^2}{2^k}\right)^{1/k} = \frac{1}{2} \cdot \left(k^2\right)^{1/k}$$

$$= \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{(\ln k)^k} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(\frac{1}{(\ln k)^k}\right)^{1/k}$$
$$= \frac{1}{\ln k} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

4

<ロ> (日) (日) (日) (日) (日)

呐

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$

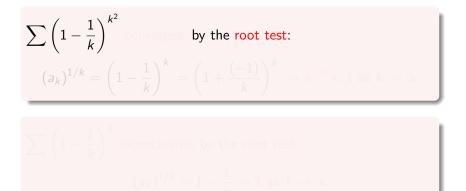
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ inconclusive, by the root test:}$$

$$(a_{k})^{1/k} = 1 - \frac{1}{k} \to 1 \text{ as } k \to \infty$$
the series diverges since  $a_{k} = \left(1 - \frac{1}{k}\right)^{k} \to e^{-1} \neq 0$ .



Jiwen He, University of Houston



the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k 
ightarrow e^{-1} 
eq 0.$ 



Jiwen He, University of Houston

▲ **■ ▶ ■ 少**へ April 8, 2008 8 / 1

- 4 回 ト - 4 回 ト

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

 $\sum \left(1-rac{1}{k}
ight)^k$  inconclusive, by the root test:  $(a_k)^{1/k}=1-rac{1}{k} o 1$  as  $k o\infty$ the series diverges since  $a_k=\left(1-rac{1}{k}
ight)^k o e^{-1}
eq 0$ .



Jiwen He, University of Houston

▲ **ミト ミーク**へ April 8, 2008 8 / 1

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k \text{ inconclusive, by the root test:}$$
$$(a_k)^{1/k} = 1 - \frac{1}{k} \to 1 \text{ as } k \to \infty$$
the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k \to e^{-1} \neq 0.$ 



Jiwen He, University of Houston

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k$$
 inconclusive, by the root test:  
 $(a_k)^{1/k} = 1 - \frac{1}{k} \to 1$  as  $k \to \infty$   
the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k \to e^{-1} \neq 0$ .



Jiwen He, University of Houston

April 8, 2008 8 / 3

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1-rac{1}{k}
ight)^k$$
 inconclusive, by the root test: $(a_k)^{1/k}=1-rac{1}{k} o 1$  as  $k o\infty$ the series diverges since  $a_k=\left(1-rac{1}{k}
ight)^k o e^{-1}
eq 0.$ 



Jiwen He, University of Houston

▶ **ब हे रे ब र**े २ April 8, 2008 8 / 3

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - rac{1}{k}
ight)^k$$
 inconclusive, by the root test: $(a_k)^{1/k} = 1 - rac{1}{k} o 1$  as  $k o \infty$  the series diverges since  $a_k = \left(1 - rac{1}{k}
ight)^k o e^{-1} 
eq 0$ .



Jiwen He, University of Houston

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k$$
 inconclusive, by the root test:  
 $(a_k)^{1/k} = 1 - \frac{1}{k} \to 1$  as  $k \to \infty$   
the series diverges since  $a_k = (1 - \frac{1}{k})^k \to e^{-1} \neq 0$ .

仲

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k$$
 inconclusive, by the root test:  
 $(a_k)^{1/k} = 1 - \frac{1}{k} \to 1$  as  $k \to \infty$   
the series diverges since  $a_k = (1 - \frac{1}{k})^k \to e^{-1} \neq 0$ .

Jiwen He, University of Houston

▶ **▲ ≣ ▶ ≣ ∽** ۹ April 8, 2008 8 / 1

イロト イヨト イヨト イヨト

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1-rac{1}{k}
ight)^k$$
 inconclusive, by the root test: $(a_k)^{1/k}=1-rac{1}{k} o 1$  as  $k o\infty$ 

the series diverges since  $a_k = (1 - \frac{1}{\nu})^k \rightarrow e^{-1} \neq 0$ .

Jiwen He, University of Houston

イロト イヨト イヨト イヨト

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - rac{1}{k}
ight)^k$$
 inconclusive, by the root test: $(a_k)^{1/k} = 1 - rac{1}{k} o 1$  as  $k o \infty$ 

the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^{\kappa} \to e^{-1} \neq 0$ .

Jiwen He, University of Houston

イロト イ団ト イヨト イヨト

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k$$
 inconclusive, by the root test: $(a_k)^{1/k} = 1 - \frac{1}{k} o 1$  as  $k o \infty$ 

the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^{\kappa} 
ightarrow e^{-1} 
eq 0.$ 

Jiwen He, University of Houston

(日) (同) (三) (三)

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1-rac{1}{k}
ight)^k$$
 inconclusive, by the root test: $(a_k)^{1/k} = 1-rac{1}{k} o 1$  as  $k o \infty$ 

the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k \rightarrow e^{-1} \neq 0$ .

Jiwen He, University of Houston

- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 2 - 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □ 0 − 4 □

Ý

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k \text{ inconclusive, by the root test:}$$
$$(a_k)^{1/k} = 1 - \frac{1}{k} \to 1 \text{ as } k \to \infty$$
the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k \to e^{-1} \neq 0.$ 

Jiwen He, University of Houston

イロト イヨト イヨト イヨト

$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges, by the root test:}$$
$$(a_k)^{1/k} = \left(1 - \frac{1}{k}\right)^k = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1} < 1 \text{ as } k \to \infty$$

$$\sum \left(1 - \frac{1}{k}\right)^k \text{ inconclusive, by the root test:}$$
$$(a_k)^{1/k} = 1 - \frac{1}{k} \to 1 \text{ as } k \to \infty$$
the series diverges since  $a_k = \left(1 - \frac{1}{k}\right)^k \to e^{-1} \neq 0.$ 

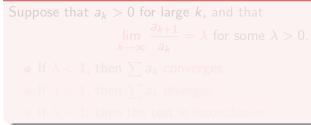
Jiwen He, University of Houston

イロト イヨト イヨト イヨト

Ratio Test

### The Ratio Test: Comparison with Geometric Series

#### Ratio Test



#### Comparison with Geometric Series



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008 9 / 1

屮

Ratio Test

# The Ratio Test: Comparison with Geometric Series

### Ratio Test

### Suppose that $a_k > 0$ for large k, and that

 $\max_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$ 

- If  $\lambda < 1$ , then  $\sum a_k$  converges.
- If  $\lambda > 1$ , then  $\sum a_k$  diverges.

• If  $\lambda = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series



屮

Ratio Test

### The Ratio Test: Comparison with Geometric Series

#### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

• If  $\lambda < 1$ , then  $\sum a_k$  converges.

• If  $\lambda > 1$ , then  $\sum a_k$  diverges.

• If  $\lambda = 1$ , then the test is inconclusive.

### Comparison with Geometric Series



H

Ratio Test

# The Ratio Test: Comparison with Geometric Series

### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

• If  $\lambda < 1$ , then  $\sum a_k$  converges.

• If  $\lambda > 1$ , then  $\sum a_k$  diverges.

• If  $\lambda = 1$ , then the test is inconclusive.

### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a multiple of a geometric series, e.g., ∑ c λ<sup>k</sup>, λ > 0, then a<sub>k+1</sub>/a<sub>k</sub> is constant, i.e., λ. If λ < 1, then ∑ a<sub>k</sub> converges. If λ ≥ 1, then ∑ a<sub>k</sub> diverges.
If lim a<sub>k+1</sub>/a<sub>k</sub> = λ < 1, then for large k, a<sub>k</sub> < cμ<sup>k</sup> with λ < μ < 1. By the basic comparison test, ∑ a<sub>k</sub> converges.



Math 1432 - Section 26626, Lecture 23

屮

Ratio Test

## The Ratio Test: Comparison with Geometric Series

### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

- If  $\lambda < 1$ , then  $\sum a_k$  converges.
- If  $\lambda > 1$ , then  $\sum a_k$  diverges.
- If  $\lambda = 1$ , then the test is inconclusive.

### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a multiple of a geometric series, e.g., ∑ c λ<sup>k</sup>, λ > 0, then a<sub>k+1</sub>/a<sub>k</sub> is constant, i.e., λ. If λ < 1, then ∑ a<sub>k</sub> converges. If λ ≥ 1, then ∑ a<sub>k</sub> diverges.
If lim a<sub>k+1</sub>/a<sub>k</sub> = λ < 1, then for large k, a<sub>k</sub> < cμ<sup>k</sup> with λ < μ < 1. By the basic comparison test, ∑ a<sub>k</sub> converges.

屮

Ratio Test

## The Ratio Test: Comparison with Geometric Series

### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{n \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

- If  $\lambda < 1$ , then  $\sum a_k$  converges.
- If  $\lambda > 1$ , then  $\sum a_k$  diverges.
- If  $\lambda = 1$ , then the test is inconclusive.

#### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a multiple of a geometric series, e.g., ∑ c λ<sup>k</sup>, λ > 0, then a<sub>k+1</sub>/a<sub>k</sub> is constant, i.e., λ. If λ < 1, then ∑ a<sub>k</sub> converges. If λ ≥ 1, then ∑ a<sub>k</sub> diverges.
If lim a<sub>k+1</sub>/a<sub>k</sub> = λ < 1, then for large k, a<sub>k</sub> < cμ<sup>k</sup> with λ < μ < 1. By the basic comparison test, ∑ a<sub>k</sub> converges.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008 9 / 1

Ratio Test

### The Ratio Test: Comparison with Geometric Series

### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

- If  $\lambda < 1$ , then  $\sum a_k$  converges.
- If  $\lambda > 1$ , then  $\sum a_k$  diverges.
- If  $\lambda = 1$ , then the test is inconclusive.

### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a multiple of a geometric series, e.g., ∑ c λ<sup>k</sup>, λ > 0, then a<sub>k+1</sub>/a<sub>k</sub> is constant, i.e., λ. If λ < 1, then ∑ a<sub>k</sub> converges. If λ ≥ 1, then ∑ a<sub>k</sub> diverges.

• If  $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda < 1$ , then for large k,  $a_k < c\mu^k$  with  $\lambda < \mu < 1$ . By the basic comparison test,  $\sum a_k$  converges.

Ħ

Ratio Test

### The Ratio Test: Comparison with Geometric Series

### Ratio Test

Suppose that  $a_k > 0$  for large k, and that

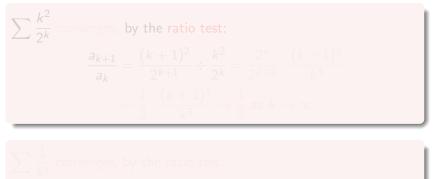
$$\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lambda \text{ for some } \lambda > 0.$$

- If  $\lambda < 1$ , then  $\sum a_k$  converges.
- If  $\lambda > 1$ , then  $\sum a_k$  diverges.
- If  $\lambda = 1$ , then the test is inconclusive.

### Comparison with Geometric Series

If ∑ a<sub>k</sub> is a multiple of a geometric series, e.g., ∑ c λ<sup>k</sup>, λ > 0, then a<sub>k+1</sub>/a<sub>k</sub> is constant, i.e., λ. If λ < 1, then ∑ a<sub>k</sub> converges. If λ ≥ 1, then ∑ a<sub>k</sub> diverges.
If lim a<sub>k+1</sub>/a<sub>k</sub> = λ < 1, then for large k, a<sub>k</sub> < cμ<sup>k</sup> with λ < μ < 1. By the basic comparison test, ∑ a<sub>k</sub> converges.

버

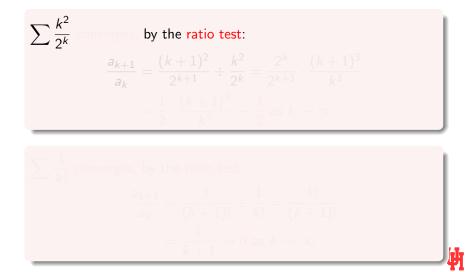


$$\frac{a_{k+1}}{a_k} = \frac{1}{(k+1)!} \div \frac{1}{k!} = \frac{k!}{(k+1)!}$$
$$= \frac{1}{k+1} \to 0 \text{ as } k \to \infty$$

搟

Jiwen He, University of Houston

3



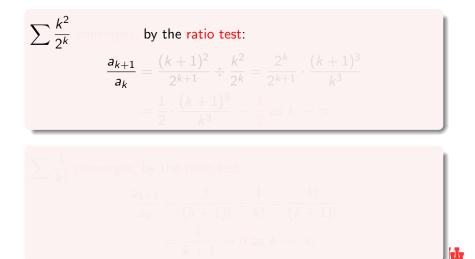
Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

pril 8, 2008 10

3

イロト イヨト イヨト イヨト



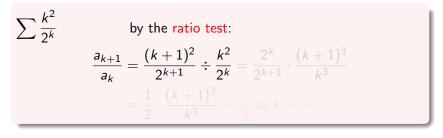
Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

pril 8, 2008 1

3

- 4 同 6 4 日 6 4 日 6





Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

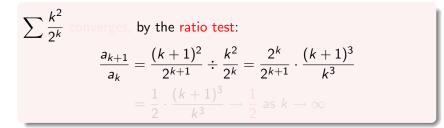
oril 8, 2008 10

3

- 4 週 ト - 4 三 ト - 4 三 ト

#### Ratio Test

### Examples





Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

pril 8, 2008 1

#### Ratio Test

## Examples

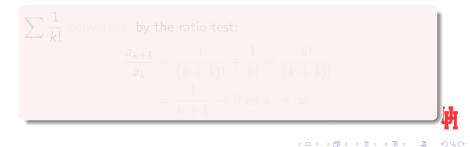
$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

#### Ratio Test

## Examples

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

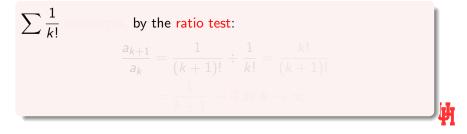
oril 8, 2008 10

3

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$

$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

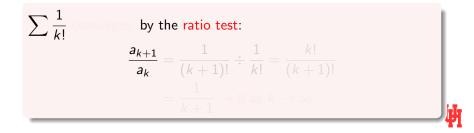
3

(本間) (本語) (本語)

#### Ratio Test

## Examples

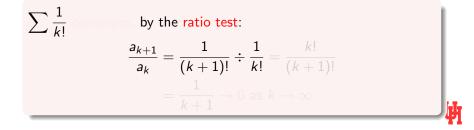
$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

oril 8, 2008 10

э

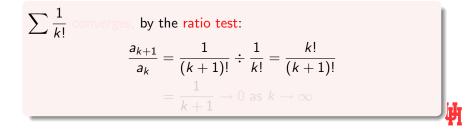
3

▲ 同 ▶ → 三 ▶

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$

$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$



Jiwen He, University of Houston

oril 8, 2008 10

< A > < 3

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$

$$\sum \frac{1}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{1}{(k+1)!} \div \frac{1}{k!} = \frac{k!}{(k+1)!}$$

$$= \frac{1}{k+1} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

3

イロト イヨト イヨト イヨト

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$

$$\sum \frac{1}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{1}{(k+1)!} \div \frac{1}{k!} = \frac{k!}{(k+1)!}$$
$$= \frac{1}{k+1} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

pril 8, 2008 10

4

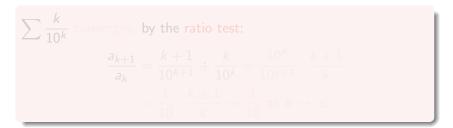
イロト イヨト イヨト イヨト

$$\sum \frac{k^2}{2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2}{2^{k+1}} \div \frac{k^2}{2^k} = \frac{2^k}{2^{k+1}} \cdot \frac{(k+1)^3}{k^3}$$
$$= \frac{1}{2} \cdot \frac{(k+1)^3}{k^3} \to \frac{1}{2} \text{ as } k \to \infty$$

$$\sum \frac{1}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{1}{(k+1)!} \div \frac{1}{k!} = \frac{k!}{(k+1)!}$$
$$= \frac{1}{k+1} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

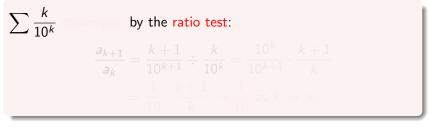
4





Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23



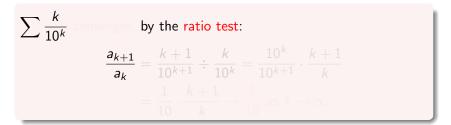


Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

oril 8, 2008 11

3

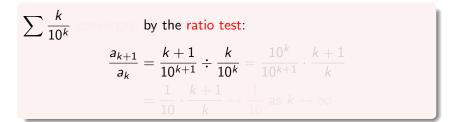




Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

oril 8, 2008 11





Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

oril 8, 2008 11

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$

$$= \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \text{ as } k \rightarrow \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k}{10^{k}} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_{k}} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^{k}} = \frac{10^{k}}{10^{k+1}} \cdot \frac{k+1}{k}$$

$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

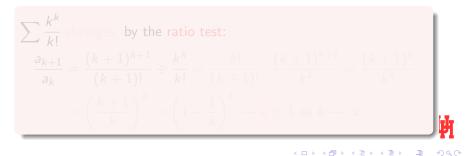
$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



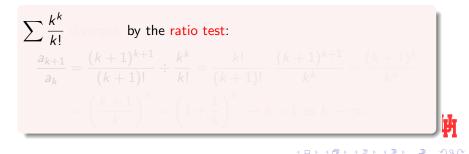
Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k}{10^{k}} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_{k}} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^{k}} = \frac{10^{k}}{10^{k+1}} \cdot \frac{k+1}{k}$$

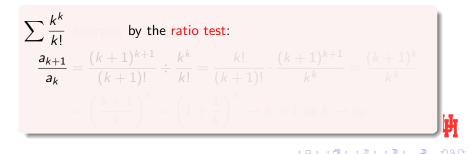
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

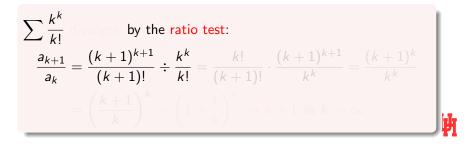
$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

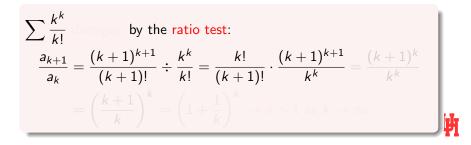
▲ 클 ▶ · 클 · ∽ ril 8, 2008 11

(日) (同) (三) (三)

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$

$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

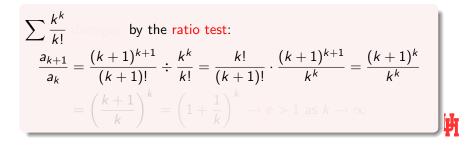
▲ 클 ▶ · 클 · ∽ ril 8, 2008 11

▲ □ ► ▲ □ ► ▲

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$

$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$



Jiwen He, University of Houston

oril 8, 2008 11

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$

$$\sum \frac{k^k}{k!} \text{ diverges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^{k+1}}{(k+1)!} \div \frac{k^k}{k!} = \frac{k!}{(k+1)!} \cdot \frac{(k+1)^{k+1}}{k^k} = \frac{(k+1)^k}{k^k}$$

$$= \left(\frac{k+1}{k}\right)^k = \left(1 + \frac{1}{k}\right)^k \rightarrow e > 1 \text{ as } k \rightarrow \infty$$

Jiwen He, University of Houston

oril 8, 2008 11

4

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$

$$\sum \frac{k^k}{k!} \text{ diverges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^{k+1}}{(k+1)!} \div \frac{k^k}{k!} = \frac{k!}{(k+1)!} \cdot \frac{(k+1)^{k+1}}{k^k} = \frac{(k+1)^k}{k^k}$$

$$= \left(\frac{k+1}{k}\right)^k = \left(1 + \frac{1}{k}\right)^k \rightarrow e > 1 \text{ as } k \rightarrow \infty$$

Jiwen He, University of Houston

4

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$

$$\sum \frac{k^k}{k!} \text{ diverges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^{k+1}}{(k+1)!} \div \frac{k^k}{k!} = \frac{k!}{(k+1)!} \cdot \frac{(k+1)^{k+1}}{k^k} = \frac{(k+1)^k}{k^k}$$

$$= \left(\frac{k+1}{k}\right)^k = \left(1 + \frac{1}{k}\right)^k \to e > 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

4

$$\sum \frac{k}{10^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{k+1}{10^{k+1}} \div \frac{k}{10^k} = \frac{10^k}{10^{k+1}} \cdot \frac{k+1}{k}$$
$$= \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10} \text{ as } k \to \infty$$

$$\sum \frac{k^k}{k!} \text{ diverges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^{k+1}}{(k+1)!} \div \frac{k^k}{k!} = \frac{k!}{(k+1)!} \cdot \frac{(k+1)^{k+1}}{k^k} = \frac{(k+1)^k}{k^k}$$

$$= \left(\frac{k+1}{k}\right)^k = \left(1 + \frac{1}{k}\right)^k \to e > 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

pril 8, 2008 11

-2

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$

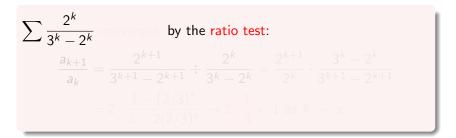
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

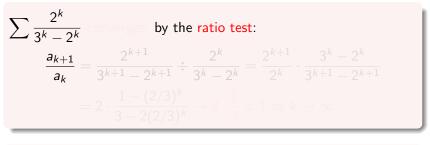




Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008





Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

#### Ratio Test

## Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

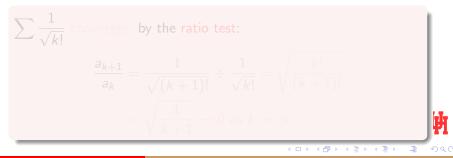
|  |  |  | l lelle |
|--|--|--|---------|
|  |  |  | - 19    |

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

# Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



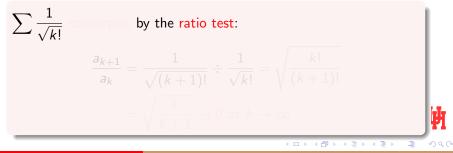
Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

April 8, 2008

## Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

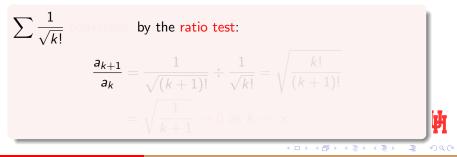


Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 23

## Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

## Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{\sqrt{k!}} \text{ converges, by the ratio test:}$   $\frac{a_{k+1}}{a_k} = \frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}} = \sqrt{\frac{k!}{(k+1)!}}$   $= \sqrt{\frac{1}{k+1}} \to 0 \text{ as } k \to \infty$ 

Jiwen He, University of Houston

## Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{\sqrt{k!}} \text{ converges, by the ratio test:}$   $\frac{a_{k+1}}{a_k} = \frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}} = \sqrt{\frac{k!}{(k+1)!}}$   $= \sqrt{\frac{1}{k+1}} \to 0 \text{ as } k \to \infty$ 

Jiwen He, University of Houston

### Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{\sqrt{k!}} \text{ converges, by the ratio test:}$   $\frac{a_{k+1}}{a_k} = \frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}} = \sqrt{\frac{k!}{(k+1)!}}$   $= \sqrt{\frac{1}{k+1}} \to 0 \text{ as } k \to \infty$ 

Jiwen He, University of Houston

### Examples

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{\sqrt{k!}} \text{ converges, by the ratio test:}$   $\frac{a_{k+1}}{a_k} = \frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}} = \sqrt{\frac{k!}{(k+1)!}}$   $= \sqrt{\frac{1}{k+1}} \to 0 \text{ as } k \to \infty$ 

Jiwen He, University of Houston

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{2^{k+1}}{3^{k+1} - 2^{k+1}} \div \frac{2^k}{3^k - 2^k} = \frac{2^{k+1}}{2^k} \cdot \frac{3^k - 2^k}{3^{k+1} - 2^{k+1}}$$
$$= 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3} < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}} = \sqrt{\frac{k!}{(k+1)!}}$$

$$= \sqrt{\frac{1}{k+1}} \to 0 \text{ as } k \to \infty$$

Jiwen He, University of Houston

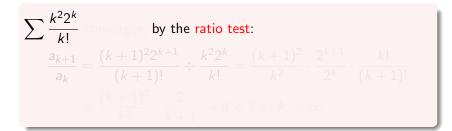




Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

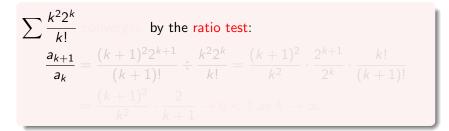




Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008





Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

# Examples

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

# Examples

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$
$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

## Examples

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

April 8, 2008

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

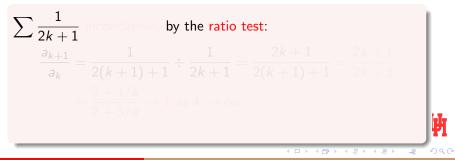


Jiwen He, University of Houston

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



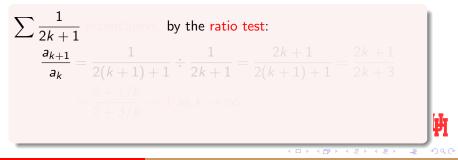
Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



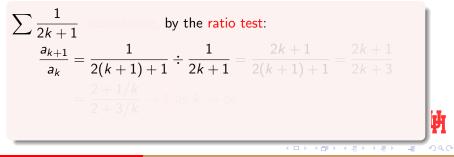
Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$



Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{1}{2(k+1)+1} \div \frac{1}{2k+1} = \frac{2k+1}{2(k+1)+1} = \frac{2k+1}{2k+3}$$

$$= \frac{2+1/k}{2+3/k} \to 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:} \\ \frac{a_{k+1}}{a_k} = \frac{1}{2(k+1)+1} \div \frac{1}{2k+1} = \frac{2k+1}{2(k+1)+1} = \frac{2k+1}{2k+3} \\ = \frac{2+1/k}{2+3/k} \to 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 23

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:} 
\frac{a_{k+1}}{a_k} = \frac{1}{2(k+1)+1} \div \frac{1}{2k+1} = \frac{2k+1}{2(k+1)+1} = \frac{2k+1}{2k+3} 
= \frac{2+1/k}{2+3/k} \to 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

< □ >

April 8, 2008

-2

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:} 
\frac{a_{k+1}}{a_k} = \frac{1}{2(k+1)+1} \div \frac{1}{2k+1} = \frac{2k+1}{2(k+1)+1} = \frac{2k+1}{2k+3} 
= \frac{2+1/k}{2+3/k} \to 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

< □ >

April 8, 2008

-2

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$

$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$

$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:} 
\frac{a_{k+1}}{a_k} = \frac{1}{2(k+1)+1} \div \frac{1}{2k+1} = \frac{2k+1}{2(k+1)+1} = \frac{2k+1}{2k+3} 
= \frac{2+1/k}{2+3/k} \to 1 \text{ as } k \to \infty$$

Jiwen He, University of Houston

< □ >

-2

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$
$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

 $\sum \frac{1}{2k+1}$  inconclusive, by the ratio test: the series diverges by the limit comparison test:  $\frac{1}{2k+1} \div \frac{1}{2k} = \frac{2k}{2k+1} \rightarrow 1 \text{ as } k \rightarrow \infty \text{ and } \sum \frac{1}{2k} \text{ diverges.}$ 

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$
$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1} \text{ inconclusive, by the ratio test:}$$
  
the series diverges by the limit comparison test:  
$$\frac{1}{2k+1} \div \frac{1}{2k} = \frac{2k}{2k+1} \rightarrow 1 \text{ as } k \rightarrow \infty \text{ and } \sum \frac{1}{2k} \text{ diverges.}$$

Jiwen He, University of Houston

イロト イヨト イヨト イヨト

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$
$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1}$$
 inconclusive, by the ratio test:  
the series diverges by the limit comparison test:  
$$\frac{1}{2k+1} \div \frac{1}{2k} = \frac{2k}{2k+1} \rightarrow 1 \text{ as } k \rightarrow \infty \text{ and } \sum \frac{1}{2k} \text{ diverges.}$$

Jiwen He, University of Houston

-∢≣⇒

A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\sum \frac{k^2 2^k}{k!} \text{ converges, by the ratio test:}$$
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)^2 2^{k+1}}{(k+1)!} \div \frac{k^2 2^k}{k!} = \frac{(k+1)^2}{k^2} \cdot \frac{2^{k+1}}{2^k} \cdot \frac{k!}{(k+1)!}$$
$$= \frac{(k+1)^2}{k^2} \cdot \frac{2}{k+1} \to 0 < 1 \text{ as } k \to \infty$$

$$\sum \frac{1}{2k+1}$$
 inconclusive, by the ratio test:  
the series diverges by the limit comparison test:  
$$\frac{1}{2k+1} \div \frac{1}{2k} = \frac{2k}{2k+1} \rightarrow 1 \text{ as } k \rightarrow \infty \text{ and } \sum \frac{1}{2k} \text{ diverges.}$$

Jiwen He, University of Houston

pril 8, 2008 13 /

4

イロト イヨト イヨト イヨト

## Outline

- Comparison Tests
- The Root Test
  The Root Test
- The Ratio Test
  The Ratio Test



Jiwen He, University of Houston