Lecture 23Section 11.3 The Root Test; The Ratio Test

Jiwen He

1 Comparison Tests

Basic Series that Converge or Diverge

$$
\sum_{k=1}^{\infty} a_{k} \text { converges } \quad \text { iff } \quad \sum_{k=j}^{\infty} a_{k} \text { converges, } \forall j \geq 1
$$

In determining whether a series converges, it does not matter where the summation begins. Thus, we will omit it and write $\sum a_{k}$.

Basic Series that Converge

$$
\begin{array}{rll}
\text { Geometric series: } & \sum x^{k}, & \text { if }|x|<1 \\
p \text {-series: } & \sum \frac{1}{k^{p}}, & \text { if } p>1
\end{array}
$$

Basic Series that Diverge

Any series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k} \neq 0$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p \leq 1
$$

Quiz
Quiz

1. $\sum \frac{1}{n}$ (a) converges, (b) diverges.
2. $\sum \frac{1}{\sqrt{n}}$ (a) converges, (b) diverges.
3. $\sum \frac{1}{n}$ Harmonic series diverges.
4. $\sum \frac{1}{\sqrt{n}} \quad p$-series with $p=\frac{1}{2}$ diverges.

Comparison Tests

Basic Comparison Test

Suppose that $0 \leq a_{k} \leq b_{k}$ for sufficiently large k.

$$
\text { If } \sum b_{k} \text { converges, then so does } \sum a_{k} \text {. }
$$

If $\sum a_{k}$ diverges, then so does $\sum b_{k}$.

Limit Comparison Test

Suppose that $a_{k}>0$ and $b_{k}>0$ for sufficiently large k, and that $\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L$ for some $L>0$.

$$
\sum a_{k} \text { converges iff } \sum b_{k} \text { converges. }
$$

Quiz
Quiz
3. $\sum \frac{1}{n^{2}+1}$
(a) converges, (b) diverges.
4. $\sum \frac{2 n}{\sqrt{3 n^{3}+5}}$
(a) converges,
(b) diverges.
3. $\sum \frac{1}{n^{2}+1}$ converges by comparison with $\sum \frac{1}{n^{2}}$.
4. $\sum \frac{2 n}{\sqrt{3 n^{3}+5}}$ converges by comparison with $\sum \frac{2}{3 n^{2}}$.

2 The Root Test

2.1 The Root Test

The Root Test: Comparison with Geometric Series

Root Test

Suppose that $a_{k}>0$ for large k, and that [0.5ex]

$$
\lim _{k \rightarrow \infty}\left(a_{k}\right)^{\frac{1}{k}}=\rho \text { for some } \rho>0
$$

- If $\rho<1$, then $\sum a_{k}$ converges.
- If $\rho>1$, then $\sum a_{k}$ diverges.
- If $\rho=1$, then the test is inconclusive.

Comparison with Geometric Series

- If $\sum a_{k}$ is a geometric series, e.g., $\sum \rho^{k}, \rho>0$, then $\left(a_{k}\right)^{\frac{1}{k}}$ is constant, i.e., ρ. If $\rho<1$, then $\sum a_{k}$ converges. If $\rho \geq 1$, then $\sum a_{k}$ diverges.
- If $\lim _{k \rightarrow \infty}\left(a_{k}\right)^{\frac{1}{k}}=\rho<1$, then for large $k, a_{k}<\mu^{k}$ with $\rho<\mu<1$. By the basic comparison test, $\sum a_{k}$ converges.

Examples

$\sum \frac{k^{2}}{2^{k}}$ converges, by the root test:

$$
\begin{aligned}
\left(a_{k}\right)^{1 / k} & =\left(\frac{k^{2}}{2^{k}}\right)^{1 / k}=\frac{1}{2} \cdot\left(k^{2}\right)^{1 / k} \\
& =\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1<1 \text { as } k \rightarrow \infty
\end{aligned}
$$

$\sum \frac{1}{(\ln k)^{k}}$ converges, by the root test:

$$
\begin{aligned}
\left(a_{k}\right)^{1 / k} & =\left(\frac{1}{(\ln k)^{k}}\right)^{1 / k} \\
& =\frac{1}{\ln k} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Examples

$\sum\left(1-\frac{1}{k}\right)^{k^{2}}$ converges, by the root test:

$$
\left(a_{k}\right)^{1 / k}=\left(1-\frac{1}{k}\right)^{k}=\left(1+\frac{(-1)}{k}\right)^{k} \rightarrow e^{-1}<1 \text { as } k \rightarrow \infty
$$

$\sum\left(1-\frac{1}{k}\right)^{k}$ inconclusive, by the root test:

$$
\left(a_{k}\right)^{1 / k}=1-\frac{1}{k} \rightarrow 1 \text { as } k \rightarrow \infty
$$

the series diverges since $a_{k}=\left(1-\frac{1}{k}\right)^{k} \rightarrow e^{-1} \neq 0$.

3 The Ratio Test

3.1 The Ratio Test

The Ratio Test: Comparison with Geometric Series Ratio Test
Suppose that $a_{k}>0$ for large k, and that [0.5ex]
$\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lambda$ for some $\lambda>0$.

- If $\lambda<1$, then $\sum a_{k}$ converges.
- If $\lambda>1$, then $\sum a_{k}$ diverges.
- If $\lambda=1$, then the test is inconclusive.

Comparison with Geometric Series

- If $\sum a_{k}$ is a multiple of a geometric series, e.g., $\sum c \lambda^{k}, \lambda>0$, then $\frac{a_{k+1}}{a_{k}}$ is constant, i.e., λ. If $\lambda<1$, then $\sum a_{k}$ converges. If $\lambda \geq 1$, then $\sum a_{k}$ diverges.
- If $\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lambda<1$, then for large $k, a_{k}<c \mu^{k}$ with $\lambda<\mu<1$. By the basic comparison test, $\sum a_{k}$ converges.

Examples

$\sum \frac{k^{2}}{2^{k}}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{(k+1)^{2}}{2^{k+1}} \div \frac{k^{2}}{2^{k}}=\frac{2^{k}}{2^{k+1}} \cdot \frac{(k+1)^{3}}{k^{3}} \\
& =\frac{1}{2} \cdot \frac{(k+1)^{3}}{k^{3}} \rightarrow \frac{1}{2} \text { as } k \rightarrow \infty
\end{aligned}
$$

$\sum \frac{1}{k!}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{1}{(k+1)!} \div \frac{1}{k!}=\frac{k!}{(k+1)!} \\
& =\frac{1}{k+1} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Examples

$\sum \frac{k}{10^{k}}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{k+1}{10^{k+1}} \div \frac{k}{10^{k}}=\frac{10^{k}}{10^{k+1}} \cdot \frac{k+1}{k} \\
& =\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \text { as } k \rightarrow \infty
\end{aligned}
$$

$\sum \frac{k^{k}}{k!}$ diverges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{(k+1)^{k+1}}{(k+1)!} \div \frac{k^{k}}{k!}=\frac{k!}{(k+1)!} \cdot \frac{(k+1)^{k+1}}{k^{k}}=\frac{(k+1)^{k}}{k^{k}} \\
& =\left(\frac{k+1}{k}\right)^{k}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e>1 \text { as } k \rightarrow \infty
\end{aligned}
$$

Examples

$\sum \frac{2^{k}}{3^{k}-2^{k}}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{2^{k+1}}{3^{k+1}-2^{k+1}} \div \frac{2^{k}}{3^{k}-2^{k}}=\frac{2^{k+1}}{2^{k}} \cdot \frac{3^{k}-2^{k}}{3^{k+1}-2^{k+1}} \\
& =2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 / 3)^{k}} \rightarrow 2 \cdot \frac{1}{3}<1 \text { as } k \rightarrow \infty
\end{aligned}
$$

$\sum \frac{1}{\sqrt{k!}}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{1}{\sqrt{(k+1)!}} \div \frac{1}{\sqrt{k!}}=\sqrt{\frac{k!}{(k+1)!}} \\
& =\sqrt{\frac{1}{k+1}} \rightarrow 0 \text { as } k \rightarrow \infty
\end{aligned}
$$

Examples

$\sum \frac{k^{2} 2^{k}}{k!}$ converges, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{(k+1)^{2} 2^{k+1}}{(k+1)!} \div \frac{k^{2} 2^{k}}{k!}=\frac{(k+1)^{2}}{k^{2}} \cdot \frac{2^{k+1}}{2^{k}} \cdot \frac{k!}{(k+1)!} \\
& =\frac{(k+1)^{2}}{k^{2}} \cdot \frac{2}{k+1} \rightarrow 0<1 \text { as } k \rightarrow \infty
\end{aligned}
$$

$\sum \frac{1}{2 k+1}$ inconclusive, by the ratio test:

$$
\begin{aligned}
\frac{a_{k+1}}{a_{k}} & =\frac{1}{2(k+1)+1} \div \frac{1}{2 k+1}=\frac{2 k+1}{2(k+1)+1}=\frac{2 k+1}{2 k+3} \\
& =\frac{2+1 / k}{2+3 / k} \rightarrow 1 \text { as } k \rightarrow \infty
\end{aligned}
$$

[2ex] the series diverges by the limit comparison test:

$$
\frac{1}{2 k+1} \div \frac{1}{2 k}=\frac{2 k}{2 k+1} \rightarrow 1 \text { as } k \rightarrow \infty \text { and } \sum \frac{1}{2 k} \text { diverges. }
$$

Outline

Contents

1 Comparison Tests 1
2 Root Test 2
2.1 Root Test . 2

3 Ratio Test 4
3.1 Ratio Test . 4

