Lecture 24

Section 11.4 Absolute and Conditional Convergence; Alternating Series

Jiwen He

Department of Mathematics, University of Houston

jiwenhe@math.uh.edu http://math.uh.edu/~jiwenhe/Math1432

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008 2

- 4 同 6 4 日 6 4 日 6

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

(4 個) トイヨト イヨト

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

イロト 人間ト イヨト イヨト

Jiwen He, University of Houston

・ロン ・四 ・ ・ ヨン ・ ヨン

Basic Series that Converge

Geometric series:	$\sum x^k$,	if $ x < 1$
<i>p</i> -series:	$\sum \frac{1}{k^p}$,	if p>1

Basic Series that Diverge

Jiwen He, University of Houston

(4 個) トイヨト イヨト

Basic Series that Converge

Geometric series:	$\sum x^k$,	if $ x < 1$
<i>p</i> -series:	$\sum \frac{1}{k^p},$	if p>1

Basic Series that Diverge

Any series
$$\sum a_k$$
 for which $\lim_{k o \infty} a_k
eq 0$
p-series: $\sum rac{1}{k^p}$, if $p \leq 1$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 24

April 10, 2008 2

Basic Series that Converge

Geometric series:	$\sum x^k$,	if $ x < 1$
<i>p</i> -series:	$\sum \frac{1}{k^{p}},$	if p>1

Basic Series that Diverge

Any series
$$\sum a_k$$
 for which $\lim_{k \to \infty} a_k \neq 0$
 p -series: $\sum \frac{1}{k^p}$, if $p \leq 1$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Basic Series that Converge

Geometric series:	$\sum x^k$,	if $ x < 1$
<i>p</i> -series:	$\sum \frac{1}{k^{p}},$	if p>1

Basic Series that Diverge

Any series
$$\sum a_k$$
 for which $\lim_{k \to \infty} a_k \neq 0$
p-series: $\sum \frac{1}{k^p}$, if $p \leq 1$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Basic Series that Converge

Geometric series:	$\sum x^k$,	if $ x < 1$
<i>p</i> -series:	$\sum \frac{1}{k^p},$	if p>1

Basic Series that Diverge

Any series
$$\sum a_k$$
 for which $\lim_{k \to \infty} a_k \neq 0$
p-series: $\sum \frac{1}{k^p}$, if $p \leq 1$

Basic Test for Convergence

Keep in Mind that, if $a_k \not\rightarrow 0$, then the series $\sum a_k$ diverges; therefore there is no reason to apply any special convergence test.

Examples

 $\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g. } \sum (-1)^{k} \text{) diverge since } x^{k} \to 0.$ $\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \to 1 \neq 0.$ $\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \to e^{-1} \neq 0.$

(日) (同) (三) (三)

Basic Test for Convergence

f $a_k \rightarrow 0$, then the series $\sum a_k$ diverges;

therefore there is no reason to apply any special convergence test.

Examples

 $\sum x^k$ with $|x| \ge 1$ (e.g, $\sum (-1)^k$) diverge since $x^k
eq 0$. $\sum \frac{k}{k+1}$ diverges since $\frac{k}{k+1} \to 1 \ne 0$. $\sum \left(1 - \frac{1}{k}\right)^k$ diverges since $a_k = \left(1 - \frac{1}{k}\right)^k \to e^{-1} \ne 0$.

(4 個) トイヨト イヨト

Basic Test for Convergence

$$\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g, } \sum (-1)^{k} \text{) diverge since } x^{k} \not\rightarrow 0.$$

$$\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \rightarrow 1 \neq 0.$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \rightarrow e^{-1} \neq 0.$$

Basic Test for Convergence

Keep in Mind that, if $a_k \rightarrow 0$, then the series $\sum a_k$ diverges; therefore there is no reason to apply any special convergence test.

$$\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g, } \sum (-1)^{k} \text{) diverge since } x^{k} \not\rightarrow 0.$$

$$\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \rightarrow 1 \neq 0.$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \rightarrow e^{-1} \neq 0.$$

Basic Test for Convergence

Keep in Mind that, if $a_k \rightarrow 0$, then the series $\sum a_k$ diverges; therefore there is no reason to apply any special convergence test.

$$\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g, } \sum (-1)^{k} \text{) diverge since } x^{k} \nrightarrow 0.$$

$$\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \to 1 \neq 0.$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \to e^{-1} \neq 0.$$

Basic Test for Convergence

it

Keep in Mind that,

$$f a_k \not\rightarrow 0$$
, then the series $\sum a_k$ diverges;

therefore there is no reason to apply any special convergence test.

$$\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g, } \sum (-1)^{k} \text{) diverge since } x^{k} \nrightarrow 0.$$

$$\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \to 1 \neq 0.$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \to e^{-1} \neq 0.$$

Basic Test for Convergence

it

Keep in Mind that,

f
$$a_k \not\rightarrow 0$$
, then the series $\sum a_k$ diverges;

therefore there is no reason to apply any special convergence test.

Examples

$$\sum x^{k} \text{ with } |x| \ge 1 \text{ (e.g, } \sum (-1)^{k} \text{) diverge since } x^{k} \nrightarrow 0.$$

$$\sum \frac{k}{k+1} \text{ diverges since } \frac{k}{k+1} \to 1 \neq 0.$$

$$\sum \left(1 - \frac{1}{k}\right)^{k} \text{ diverges since } a_{k} = \left(1 - \frac{1}{k}\right)^{k} \to e^{-1} \neq 0.$$

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Basic Comparison Test

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Limit Comparison Test

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Limit Comparison Test

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Limit Comparison Test

・ロト ・四ト ・ヨト ・ヨト

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with *p*-series $\sum 1/k^p$

Limit Comparison Test

$$\sum \frac{1}{k^3 - 1} \text{ converges by comparison with } \sum \frac{1}{k^3}.$$

$$\sum \frac{3k^2 + 2k + 1}{k^3 + 1} \text{ diverges by comparison with } \sum \frac{3}{k}$$

$$\sum \frac{5\sqrt{k} + 100}{2k^2\sqrt{k} - 9\sqrt{k}} \text{ converges by comparison with } \sum \frac{5}{2k^2}$$

▲ @ ▶ ▲ ≥ ▶ ▲

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

Jiwen He, University of Houston

< 回 ト < 三 ト < 三 ト

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

Jiwen He, University of Houston

< 回 ト < 三 ト < 三 ト

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges: } (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \rightarrow \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{\ln k} \rightarrow 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges: } (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \rightarrow e^{-1}$$

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges: } (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges: } (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \text{ converges: } (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \text{ converges: } (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \operatorname{converges:} (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \operatorname{converges:} (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \operatorname{converges:} (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Jiwen He, University of Houston

April 10, 2008 5 /
Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$\sum \frac{k^2}{2^k} \operatorname{converges:} (a_k)^{1/k} = \frac{1}{2} \cdot \left[k^{1/k}\right]^2 \to \frac{1}{2} \cdot 1$$
$$\sum \frac{1}{(\ln k)^k} \operatorname{converges:} (a_k)^{1/k} = \frac{1}{\ln k} \to 0$$
$$\sum \left(1 - \frac{1}{k}\right)^{k^2} \operatorname{converges:} (a_k)^{1/k} = \left(1 + \frac{(-1)}{k}\right)^k \to e^{-1}$$

Jiwen He, University of Houston

April 10, 2008 5 /

Convergence Tests Absolute Convergence Alternating Series F

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

5 / 16

Convergence Tests Absolute Convergence Alternating Series

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Jiwen He, University of Houston

Convergence Tests Absolute Convergence Alternating Series

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{3-2(2/3)^k}} \rightarrow 2 \cdot \frac{1}{3}$$

Jiwen He, University of Houston

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow c$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1-(2/3)^k}{3-2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Jiwen He, University of Houston

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{3-2(2/3)^k}} - 2 \cdot \frac{1}{3-2(2/3)^k}$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1}{3-2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1} - 0}$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \to \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \to 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \to e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1-(2/3)^k}{3-2(2/3)^k} \to 2 \cdot \frac{1}{3}$$

Jiwen He, University of Houston

5 / 16

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = \left(1 + \frac{1}{k}\right)^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Jiwen He, University of Houston

5 / 16

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \to \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \to 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \to e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \to 0$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1 + \frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Jiwen He, University of Houston

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \rightarrow \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \rightarrow 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1+\frac{1}{k})^k \rightarrow e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1-(2/3)^k}{3-2(2/3)^k} \rightarrow 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \rightarrow 0$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \to \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \to 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1 + \frac{1}{k})^k \to e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \to 0$$

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$\sum \frac{k^2}{2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{2} \cdot \frac{(k+1)^2}{k^2} \to \frac{1}{2}$$

$$\sum \frac{1}{k!} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{k+1} \to 0$$

$$\sum \frac{k}{10^k} \text{ converges: } \frac{a_{k+1}}{a_k} = \frac{1}{10} \cdot \frac{k+1}{k} \to \frac{1}{10}$$

$$\sum \frac{k^k}{k!} \text{ diverges: } \frac{a_{k+1}}{a_k} = (1 + \frac{1}{k})^k \to e$$

$$\sum \frac{2^k}{3^k - 2^k} \text{ converges: } \frac{a_{k+1}}{a_k} = 2 \cdot \frac{1 - (2/3)^k}{3 - 2(2/3)^k} \to 2 \cdot \frac{1}{3}$$

$$\sum \frac{1}{\sqrt{k!}} \text{ converges: } \frac{a_{k+1}}{a_k} = \sqrt{\frac{1}{k+1}} \to 0$$

A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.

if $\sum_{k=1}^{k} |a_k|$ converges, then $\sum_{k=1}^{k} a_k$ converges.

., absolutely convergent series are convergent.

Alternating p-Series with p > 1

 $\sum_{k=1}^{k} (-1)^{k} x^{k}, -1 < x < 1, \text{ converge absolutely because } \sum_{k=1}^{k} |x|^{k}$ converges. = $1 - \frac{1}{2} - \frac{1}{2^{2}} + \frac{1}{2^{3}} - \frac{1}{2^{4}} + \frac{1}{2^{5}} + \frac{1}{2^{5}} - \cdots$ converge absolutely.

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

7 / 16

Jiwen He, University of Houston

Absolute Convergence

A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.

- if $\sum |a_k|$ converges, then $\sum a_k$ converges.
- .e., absolutely convergent series are convergent.

Alternating p-Series with p > 1

Geometric Series with -1 < x < 1

Absolute Convergence

A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.

- if $\sum |a_k|$ converges, then $\sum a_k$ converges.
- i.e., absolutely convergent series are convergent.

Alternating *p*-Series with p > 1

Geometric Series with -1 < x < 1

Absolute Convergence

A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.

- if $\sum |a_k|$ converges, then $\sum a_k$ converges.
- i.e., absolutely convergent series are convergent.

Alternating p-Series with p > 1

$$\sum \frac{(-1)^k}{k^p}, \ p > 1, \ \text{converge absolutely because} \sum \frac{1}{k^p} \ \text{converges.}$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \cdots \ \text{converge absolutely.}$$

Geometric Series with -1 < x < 1

 $\sum_{\text{converges.}} (-1)^{j(k)} x^k, \ -1 < x < 1, \text{ converge absolutely because } \sum |x|^k$ $\Rightarrow \ 1 - \frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} - \cdots \text{ converge absolutely.}$

Absolute Convergence

A series $\sum a_k$ is said to converge absolutely if $\sum |a_k|$ converges.

- if $\sum |a_k|$ converges, then $\sum a_k$ converges.
- i.e., absolutely convergent series are convergent.

Alternating p-Series with p > 1

$$\sum \frac{(-1)^k}{k^p}, \ p > 1, \ \text{converge absolutely because} \sum \frac{1}{k^p} \ \text{converges.}$$

$$\Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} - \cdots \ \text{converge absolutely.}$$

Geometric Series with -1 < x < 1

$$\sum_{\substack{\text{converges.}\\ \Rightarrow \quad 1 - \frac{1}{2} - \frac{1}{2^2} + \frac{1}{2^3} - \frac{1}{2^4} + \frac{1}{2^5} + \frac{1}{2^6} - \cdots \text{ converge absolutely.}}$$

Conditional Convergence

A series $\sum a_k$ is said to converge conditionally if $\sum a_k$ converges while $\sum |a_k|$ diverges.

Alternating *p*-Series with 0

$$\sum_{k \neq 0} \frac{(-1)^k}{k^p}, \ 0 diverges.
$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$$$

Jiwen He, University of Houston

A (10) A (10)

Conditional Convergence

A series $\sum a_k$ is said to converge conditionally if $\sum a_k$ converges while $\sum |a_k|$ diverges.

Alternating *p*-Series with 0

$$\sum_{\substack{k \neq p \\ k \neq p \\ k \neq p \\ k = 1}}^{\infty} \frac{(-1)^k}{k^p}, \ 0$$

Conditional Convergence

A series $\sum a_k$ is said to converge conditionally if $\sum a_k$ converges while $\sum |a_k|$ diverges.

Alternating *p*-Series with 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ 0 diverges.
$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$$$

Conditional Convergence

A series $\sum a_k$ is said to converge conditionally if $\sum a_k$ converges while $\sum |a_k|$ diverges.

Alternating *p*-Series with 0

$$\sum_{\substack{k \neq p \\ \text{diverges.}}} \frac{(-1)^k}{k^p}, \ 0
$$\Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$$$

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$(-1)^k a_k = a_0 - a_1 + a_2 - a_3 + a_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers. If $a_k \to 0$, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

 $\sum \frac{(-1)^{k}}{k^{p}}, p > 0, \text{ converge since } f(x) = \frac{1}{x^{p}} \text{ is decreasing, i.e.,}$ $f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{k \to \infty} f(x) = 0.$ $\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$

Jiwen He, University of Houston

Let $\{a_k\}$ be a sequence of positive numbers.

 $\sum (-1)^k a_k = a_0 - a_1 + a_2 - a_3 + a_4 - \cdots$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers. If $a_k \to 0$, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

Jiwen He, University of Houston

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k \mathsf{a}_k = \mathsf{a}_0 - \mathsf{a}_1 + \mathsf{a}_2 - \mathsf{a}_3 + \mathsf{a}_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers. If $a_k \to 0$, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

Jiwen He, University of Houston

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k a_k = a_0 - a_1 + a_2 - a_3 + a_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers.

If $a_k \to 0$, then $\sum (-1)^k a_k$ converges.

Alternating p-Series with p > 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ p > 0, \text{ converge since } f(x) = \frac{1}{x^p} \text{ is decreasing, i.e.,}$$

$$f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k \mathsf{a}_k = \mathsf{a}_0 - \mathsf{a}_1 + \mathsf{a}_2 - \mathsf{a}_3 + \mathsf{a}_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers.

If
$$a_k \to 0$$
, then $\sum (-1)^k a_k$ converges.

Alternating p-Series with p > 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ p > 0, \text{ converge since } f(x) = \frac{1}{x^p} \text{ is decreasing, i.e.,}$$

$$f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k \mathsf{a}_k = \mathsf{a}_0 - \mathsf{a}_1 + \mathsf{a}_2 - \mathsf{a}_3 + \mathsf{a}_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers.

If
$$a_k \to 0$$
, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ p > 0, \ \text{converge since } f(x) = \frac{1}{x^p} \text{ is decreasing, i.e.,}$$

$$f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k \mathsf{a}_k = \mathsf{a}_0 - \mathsf{a}_1 + \mathsf{a}_2 - \mathsf{a}_3 + \mathsf{a}_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers.

If
$$a_k \to 0$$
, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ p > 0, \text{ converge since } f(x) = \frac{1}{x^p} \text{ is decreasing, i.e.,}$$

$$f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$

Alternating Series

Let $\{a_k\}$ be a sequence of positive numbers.

$$\sum (-1)^k \mathsf{a}_k = \mathsf{a}_0 - \mathsf{a}_1 + \mathsf{a}_2 - \mathsf{a}_3 + \mathsf{a}_4 - \cdots$$

is called an alternating series.

Alternating Series Test

Let $\{a_k\}$ be a decreasing sequence of positive numbers.

If
$$a_k \to 0$$
, then $\sum (-1)^k a_k$ converges.

Alternating *p*-Series with p > 0

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^p}, \ p > 0, \text{ converge since } f(x) = \frac{1}{x^p} \text{ is decreasing, i.e.,}$$

$$f'(x) = -\frac{p}{x^{p+1}} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\Rightarrow \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} - \cdots \text{ converge conditionally.}$$

Examples

$$\sum \frac{(-1)^k}{2k+1}$$
, converge since $f(x) = \frac{1}{2x+1}$ is decreasing, i.e.,
$$f'(x) = -\frac{2}{(2x+1)^2} > 0$$
 for $\forall x > 0$, and $\lim_{x \to \infty} f(x) = 0$.

$$\sum \frac{(-1)^k k}{k^2 + 10}, \text{ converge since } f(x) = \frac{x}{x^2 + 10} \text{ is decreasing, i.e.,}$$
$$f'(x) = -\frac{x^2 - 10}{(x^2 + 10)^2} > 0, \text{ for } \forall x > \sqrt{10}, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

Jiwen He, University of Houston

April 10, 2008

イロト イヨト イヨト イヨト

4

Examples

$$\sum \frac{(-1)^k}{2k+1}$$
, converge since $f(x) = \frac{1}{2x+1}$ is decreasing, i.e.,
 $f'(x) = -\frac{2}{(2x+1)^2} > 0$ for $\forall x > 0$, and $\lim_{x \to \infty} f(x) = 0$.

$$\sum \frac{(-1)^k k}{k^2 + 10}, \text{ converge since } f(x) = \frac{x}{x^2 + 10} \text{ is decreasing, i.e.,}$$
$$f'(x) = -\frac{x^2 - 10}{(x^2 + 10)^2} > 0, \text{ for } \forall x > \sqrt{10}, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

Jiwen He, University of Houston

イロト イヨト イヨト イヨト

4

$$\sum \frac{(-1)^k}{2k+1}$$
, converge since $f(x) = \frac{1}{2x+1}$ is decreasing, i.e.,
$$f'(x) = -\frac{2}{(2x+1)^2} > 0$$
 for $\forall x > 0$, and $\lim_{x \to \infty} f(x) = 0$.

$$\sum \frac{(-1)^k k}{k^2 + 10}, \text{ converge since } f(x) = \frac{x}{x^2 + 10} \text{ is decreasing, i.e.,}$$
$$f'(x) = -\frac{x^2 - 10}{(x^2 + 10)^2} > 0, \text{ for } \forall x > \sqrt{10}, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

Jiwen He, University of Houston

pril 10, 2008 1
$$\sum \frac{(-1)^k}{2k+1}, \text{ converge since } f(x) = \frac{1}{2x+1} \text{ is decreasing, i.e.,}$$
$$f'(x) = -\frac{2}{(2x+1)^2} > 0 \text{ for } \forall x > 0, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

$$\sum \frac{(-1)^k k}{k^2 + 10}, \text{ converge since } f(x) = \frac{x}{x^2 + 10} \text{ is decreasing, i.e.,}$$
$$f'(x) = -\frac{x^2 - 10}{(x^2 + 10)^2} > 0, \text{ for } \forall x > \sqrt{10}, \text{ and } \lim_{x \to \infty} f(x) = 0.$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 2

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\{a_k\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L = \sum_{k=0}^{\infty} (-1)^k a_k$. Then the sum L lies between consecutive partial sums s_n , s_{n+1} , $s_n < L < s_{n+1}$, if n is odd; $s_{n+1} < L < s_n$, if n is even. and thus s_n approximates L to within a_{n+1}

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 24

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\{a_k\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L = \sum_{k=0}^{\infty} (-1)^k a_k$. Then the sum L lies between consecutive partial sums s_n , s_{n+1} , $s_n < L < s_{n+1}$, if n is odd; $s_{n+1} < L < s_n$, if n is even. and thus s_n approximates L to within a_{n+1} $|L - s_n| < a_{n+1}$.

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\{a_k\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L = \sum_{k=0}^{\infty} (-1)^k a_k$. Then the sum L lies between consecutive partial sums s_n , s_{n+1} ,

 $s_n < L < s_{n+1}$, if *n* is odd; $s_{n+1} < L < s_n$, if *n* is even.

and thus s_n approximates L to within a_{n+1}

$$|L-s_n| < a_{n+1}.$$

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\{a_k\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L = \sum_{k=0}^{\infty} (-1)^k a_k$. Then the sum L lies between consecutive partial sums s_n , s_{n+1} ,

 $s_n < L < s_{n+1}$, if *n* is odd; $s_{n+1} < L < s_n$, if *n* is even.

and thus s_n approximates L to within a_{n+1}

$$|L-s_n| < a_{n+1}.$$

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \Rightarrow n+2 > 10^2 \Rightarrow n > 98$.
Then $n = 99$ and the 99th partial sum s_{100} is
 $s_{99} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100} \approx 0.6882$.
From the estimate
 $|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991$.
we conclude that
 $s_{99} \approx 0.6882 < \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln 2 < 0.6981 \approx s_{100}$

Jiwen He, University of Houston

畃

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \Rightarrow n+2 > 10^2 \Rightarrow n > 98$.
Then $n = 99$ and the 99th partial sum s_{100} is
 $s_{99} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots + \frac{1}{99} - \frac{1}{100} \approx 0.6882$.
From the estimate
 $|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991$.
we conclude that
 $s_{99} \approx 0.6882 < \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \ln 2 < 0.6981 \approx s_{100}$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

4

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \implies n+2 > 10^2 \implies n > 98$.
Then $n = 99$ and the 99th partial sum s_{100} is
 $s_{00} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \cdots + \frac{1}{2} - \frac{1}{2} \implies 0.6882$.

From the estimate

$$|L-s_{99}| < s_{100} = \frac{1}{101} \approx 0.00991.$$

we conclude that

 $k \approx 0.6882 < \sum_{k=1}^{k} \frac{(-1)^{-k}}{k} = \ln 2 < 0.6981 \approx 0.6981$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

中

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .

Set
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$
. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \implies n+2 > 10^2 \implies n > 98.$

Then n = 99 and the 99th partial sum s_{100} is

$$s_{99} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100} \approx 0.6882.$$

From the estimate

$$|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991.$$

we conclude that

$$s_{99} pprox 0.6882 < \sum_{i=1}^{\infty} rac{(-1)^{k+1}}{k} = \ln 2 < 0.6981 pprox s_{100}$$

Jiwen He, University of Houston

中

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .

Set
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$
. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \implies n+2 > 10^2 \implies n > 98$.
Then $n = 99$ and the 99th partial sum s_{100} is
 $s_{99} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100} \approx 0.6882$.
From the estimate
 $|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991$.
we conclude that
 $\sum_{k=0}^{\infty} (-1)^{k+1}$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 24

April 10, 2008

4

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .

Set
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$
. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \Rightarrow n+2 > 10^2 \Rightarrow n > 98$.
Then $n = 99$ and the 99th partial sum s_{100} is

$$s_{99} = 1 - rac{1}{2} + rac{1}{3} - rac{1}{4} + \dots + rac{1}{99} - rac{1}{100} pprox 0.6882.$$

From the estimate

$$|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991.$$

we conclude that

$$s_{99} pprox 0.6882 < \sum_{k=1}^{\infty} rac{(-1)^{k+1}}{k} = \ln 2 < 0.6981 pprox s_{100}$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 24

畃

Find
$$s_n$$
 to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} \cdots$ within 10^{-2} .

Set
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k+1}$$
. For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(n+1)+1} < 10^{-2} \implies n+2 > 10^2 \implies n > 98.$

Then n = 99 and the 99th partial sum s_{100} is

$$s_{99} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100} \approx 0.6882.$$

From the estimate

$$|L - s_{99}| < a_{100} = \frac{1}{101} \approx 0.00991.$$

we conclude that

$$s_{99} pprox 0.6882 < \sum_{k=1}^{\infty} rac{(-1)^{k+1}}{k} = \ln 2 < 0.6981 pprox s_{100}$$

Jiwen He, University of Houston

Math 1432 – Section 26626, Lecture 2

뷔

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within
 10^{-2} .
For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \Rightarrow n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is
 $s_1 = 1 - \frac{1}{3!} \approx 0.8333$
From the estimate
 $|L - s_1| < a_2 = \frac{1}{5!} \approx 0.0083$.
we conclude that
 $s_1 \approx 0.8333 < \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 \approx s_2$

Jiwen He, University of Houston

April 10, 2008

13 / 16

畃

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within
 10^{-2} .
For $|L - s_n| < 10^{-2}$, we want
 $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \Rightarrow n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is
 $s_1 = 1 - \frac{1}{3!} \approx 0.8333$
From the estimate
 $|L - s_1| < a_2 = \frac{1}{5!} \approx 0.0083$.
we conclude that
 $s_1 \approx 0.8333 < \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 \approx s_2$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

13 / 16

呐

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within 10^{-2} .
For $|L - s_n| < 10^{-2}$, we want $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \Rightarrow n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is $s_1 = 1 - \frac{1}{3!} \approx 0.8333$
From the estimate $|L - s_1| < a_2 = \frac{1}{5!} \approx 0.0083$.
we conclude that $s_1 \approx 0.8333 < \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} - \sin 1 < 0.8416 \approx s_2$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

13 / 16

畃

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within 10^{-2} .
For $|L - s_n| < 10^{-2}$, we want $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \Rightarrow n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is $s_1 = 1 - \frac{1}{3!} \approx 0.8333$
From the estimate $|L - s_1| < a_2 = \frac{1}{5!} \approx 0.0083$.
we conclude that $s_1 \approx 0.8333 < \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 \approx s_2$

Jiwen He, University of Houston

April 10, 2008

中

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within 10^{-2} .

For
$$|L - s_n| < 10^{-2}$$
, we want
 $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \Rightarrow n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is
 $s_1 = 1 - \frac{1}{3!} \approx 0.8333$
From the estimate

$$|L-s_1| < a_2 = \frac{1}{5!} \approx 0.0083.$$

we conclude that

$$s_1 pprox 0.8333 < \sum_{k=0}^\infty rac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 pprox s_2$$

Jiwen He, University of Houston

April 10, 2008

畃

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within 10^{-2} .

For
$$|L - s_n| < 10^{-2}$$
, we want
 $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \implies n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is
 $s_1 = 1 - \frac{1}{3!} \approx 0.8333$

From the estimate

$$|L-s_1| < a_2 = \frac{1}{5!} \approx 0.0083.$$

we conclude that

$$s_1 pprox 0.8333 < \sum_{k=0}^{\infty} rac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 pprox s_2$$

Jiwen He, University of Houston

April 10, 2008

13 / 16

中

Find
$$s_n$$
 to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = 1 - \frac{1}{3!} + \frac{1}{5!} \cdots$ within 10^{-2} .

For
$$|L - s_n| < 10^{-2}$$
, we want
 $a_{n+1} = \frac{1}{(2(n+1)+1)!} < 10^{-2} \implies n \ge 1$.
Then $n = 1$ and the 2nd partial sum s_2 is
 $s_1 = 1 - \frac{1}{3!} \approx 0.8333$

From the estimate

$$|L-s_1| < a_2 = \frac{1}{5!} \approx 0.0083.$$

we conclude that

$$s_1 \approx 0.8333 < \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2k+1)!} = \sin 1 < 0.8416 \approx s_2$$

Jiwen He, University of Houston

3 / 16

中

Rearrangement of Absolute Convergence Series

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Rearrangement of Absolute Convergence Series

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots ?$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum

Jiwen He, University of Houston

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots ? =$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the come curr

भ

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots ?$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots ? = \frac{2}{3}$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots = \frac{2}{3}$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Rearrangement of Absolute Convergence Series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k} = 1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \frac{1}{2^4} - \frac{1}{2^5} + \dots = \frac{2}{3} \text{ absolutely}$$

Rearrangement $1 + \frac{1}{2^2} - \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^6} - \frac{1}{2^3} + \frac{1}{2^8} + \frac{1}{2^{10}} - \frac{1}{2^5} \dots = \frac{2}{3}$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Rearrangement of Conditional Convergence Series

Multiply the original series by $\frac{1}{2}$

Adding the two series, we get the rearrangement

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

Rearrangement of Conditional Convergence Series

Adding the two series, we get the rearrangement

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

.5 / 16

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots ? = \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

5 / 16

H

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots ? = \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

April 10, 2008

l5 / 16

H

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots ? = \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Math 1432 - Section 26626, Lecture 24

5 / 16

H

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots ? = \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \cdots$

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement
Convergence Tests Absolute Convergence Alternating Series

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

 $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2$

Adding the two series, we get the rearrangement

Jiwen He, University of Houston

Math 1432 - Section 26626, Lecture 24

5 / 16

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2$$

Jiwen He, University of Houston

5 / 16

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2$$

Jiwen He, University of Houston

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Multiply the original series by $\frac{1}{2}$

$$\frac{1}{2}\sum_{k=1}^{\infty}\frac{(-1)^{k+1}}{k} = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \dots = \frac{1}{2}\ln 2$$

Adding the two series, we get the rearrangement

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} + \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \dots = \frac{3}{2} \ln 2$$

Jiwen He, University of Houston

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to +∞ or -∞, or even to oscillate between any two bounds we choose.

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to +∞ or -∞, or even to oscillate between any two bounds we choose.

Rearrangement of Conditional Convergence Series

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 \text{ conditionally}$$

Rearrangement $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} \dots \neq \ln 2$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to +∞ or -∞, or even to oscillate between any two bounds we choose.

Outline

- Convergence Tests
- Absolute ConvergenceAbsolute Convergence
- Alternating Series
- Rearrangements

Jiwen He, University of Houston