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Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series:
∑

xk , if |x | < 1

p-series:
∑ 1

kp
, if p > 1

Basic Series that Diverge

Any series
∑

ak for which lim
k→∞

ak 6= 0

p-series:
∑ 1

kp
, if p ≤ 1
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Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that,
if ak 9 0, then the series

∑
ak diverges;

therefore there is no reason to apply any special convergence test.

Examples∑
xk with |x | ≥ 1 (e.g,

∑
(−1)k) diverge since xk 9 0.∑ k

k + 1
diverges since k

k+1 → 1 6= 0.

∑ (
1− 1

k

)k

diverges since ak =
(
1− 1

k

)k → e−1 6= 0.
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Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or
limit comparison with p-series

∑
1/kp

Basic Comparison Test∑ 1

2k3 + 1
converges by comparison with

∑ 1

k3∑ k3

k5 + 4k4 + 7
converges by comparison with

∑ 1

k2∑ 1

k3 − k2
converges by comparison with

∑ 2

k3∑ 1

3k + 1
diverges by comparison with

∑ 1

3(k + 1)∑ 1

ln(k + 6)
diverges by comparison with

∑ 1

k + 6
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∑
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Limit Comparison Test∑ 1

k3 − 1
converges by comparison with

∑ 1

k3
.∑ 3k2 + 2k + 1

k3 + 1
diverges by comparison with

∑ 3

k∑ 5
√

k + 100

2k2
√

k − 9
√

k
converges by comparison with

∑ 5

2k2
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Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test∑ k2

2k
converges: (ak)1/k = 1

2 ·
[
k1/k

]2 → 1
2 · 1∑ 1

(ln k)k
converges: (ak)1/k = 1

ln k → 0∑ (
1− 1

k

)k2

converges: (ak)1/k =
(
1 + (−1)

k

)k
→ e−1
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Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of
powers and factorials.

Ratio Comparison Test∑ k2

2k
converges: ak+1

ak
= 1

2 ·
(k+1)2

k2 → 1
2∑ 1

k!
converges: ak+1

ak
= 1

k+1 → 0∑ k

10k
converges: ak+1

ak
= 1

10 ·
k+1
k → 1

10∑ kk

k!
diverges: ak+1

ak
=

(
1 + 1

k

)k → e∑ 2k

3k − 2k
converges: ak+1

ak
= 2 · 1−(2/3)k

3−2(2/3)k
→ 2 · 1

3∑ 1√
k!

converges: ak+1

ak
=

√
1

k+1 → 0
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Absolute Convergence
Absolute Convergence

A series
∑

ak is said to converge absolutely if
∑
|ak | converges.

if
∑
|ak | converges, then

∑
ak converges.

i.e., absolutely convergent series are convergent.

Alternating p-Series with p > 1∑ (−1)k

kp
, p > 1, converge absolutely because

∑ 1

kp
converges.

⇒
∞∑

k=1

(−1)k+1

k2
= 1− 1

22
+

1

32
− 1

42
− · · · converge absolutely.

Geometric Series with −1 < x < 1∑
(−1)j(k)xk , −1 < x < 1, converge absolutely because

∑
|x |k

converges.

⇒ 1− 1

2
− 1

22
+

1

23
− 1

24
+

1

25
+

1

26
− · · · converge absolutely.
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Conditional Convergence

Conditional Convergence

A series
∑

ak is said to converge conditionally if
∑

ak converges
while

∑
|ak | diverges.

Alternating p-Series with 0 < p ≤ 1∑ (−1)k

kp
, 0 < p ≤ 1, converge conditionally because

∑ 1

kp

diverges.

⇒
∞∑

k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
− · · · converge conditionally.
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Alternating Series
Alternating Series

Let {ak} be a sequence of positive numbers.∑
(−1)kak = a0 − a1 + a2 − a3 + a4 − · · ·

is called an alternating series.

Alternating Series Test

Let {ak} be a decreasing sequence of positive numbers.

If ak → 0, then
∑

(−1)kak converges.

Alternating p-Series with p > 0∑ (−1)k

kp
, p > 0, converge since f (x) =

1

xp
is decreasing, i.e.,

f ′(x) = − p

xp+1
> 0 for ∀x > 0, and lim

x→∞
f (x) = 0.

⇒
∞∑

k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
− · · · converge conditionally.
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= 1− 1

2
+

1

3
− 1

4
− · · · converge conditionally.
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Examples

∑ (−1)k

2k + 1
, converge since f (x) =

1

2x + 1
is decreasing, i.e.,

f ′(x) = − 2

(2x + 1)2
> 0 for ∀x > 0, and lim

x→∞
f (x) = 0.

∑ (−1)kk

k2 + 10
, converge since f (x) =

x

x2 + 10
is decreasing, i.e.,

f ′(x) = − x2 − 10

(x2 + 10)2
> 0, for ∀x >

√
10, and lim

x→∞
f (x) = 0.
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An Estimate for Alternating Series

An Estimate for Alternating Series

Let {ak} be a decreasing sequence of positive numbers that tends

to 0 and let L =
∞∑

k=0

(−1)kak . Then the sum L lies between

consecutive partial sums sn, sn+1,

sn < L < sn+1, if n is odd; sn+1 < L < sn, if n is even.

and thus sn approximates L to within an+1

|L− sn| < an+1.
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Example

Find sn to approximate
∞∑

k=1

(−1)k+1

k
= 1− 1

2
+

1

3
· · · within 10−2.

Set
∞∑

k=1

(−1)k+1

k
=

∞∑
k=0

(−1)k

k + 1
. For |L− sn| < 10−2, we want

an+1 =
1

(n + 1) + 1
< 10−2 ⇒ n + 2 > 102 ⇒ n > 98.

Then n = 99 and the 99th partial sum s100 is

s99 = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

99
− 1

100
≈ 0.6882.

From the estimate

|L− s99| < a100 =
1

101
≈ 0.00991.

we conclude that

s99 ≈ 0.6882 <

∞∑
k=1

(−1)k+1

k
= ln 2 < 0.6981 ≈ s100
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Example

Find sn to approximate
∞∑

k=0

(−1)k+1

(2k + 1)!
= 1− 1

3!
+

1

5!
· · · within

10−2.

For |L− sn| < 10−2, we want

an+1 =
1

(2(n + 1) + 1)!
< 10−2 ⇒ n ≥ 1.

Then n = 1 and the 2nd partial sum s2 is

s1 = 1− 1

3!
≈ 0.8333

From the estimate

|L− s1| < a2 =
1

5!
≈ 0.0083.

we conclude that

s1 ≈ 0.8333 <

∞∑
k=0

(−1)k+1

(2k + 1)!
= sin 1 < 0.8416 ≈ s2
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

∞∑
k=0

(−1)k

2k
= 1− 1

2
+

1

22
− 1

23
+

1

24
− 1

25
+ · · · =

2

3
absolutely

Rearrangement 1 +
1

22
− 1

2
+

1

24
+

1

26
− 1

23
+

1

28
+

1

210
− 1

25
· · · ? =

2

3

Theorem

All rearrangements of an absolutely convergent series converge
absolutely to the same sum.
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Remark

A series that is only conditionally convergent can be
rearranged to converge to any number we please.

It can also be arranged to diverge to +∞ or −∞, or even to
oscillate between any two bounds we choose.
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