Lecture 24
 Section 11.4 Absolute and Conditional Convergence; Alternating Series

Jiwen He

Department of Mathematics, University of Houston
jiwenhe@math.uh.edu
http://math.uh.edu/~jiwenhe/Math1432

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series:

Basic Series that Diverge

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series:

p-series

Basic Series that Diverge

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$
p-series:

Basic Series that Diverge

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$
p-series:

if $p>1$

Basic Series that Diverge

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p>1
$$

Basic Series that Diverge

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p>1
$$

Basic Series that Diverge
Any series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k} \neq 0$
p-series

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p>1
$$

Basic Series that Diverge
Any series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k} \neq 0$
p-series:

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p>1
$$

Basic Series that Diverge
Any series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k} \neq 0$
p-series:

Basic Series that Converge or Diverge

Basic Series that Converge

Geometric series: $\quad \sum x^{k}, \quad$ if $|x|<1$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p>1
$$

Basic Series that Diverge
Any series $\sum a_{k}$ for which $\lim _{k \rightarrow \infty} a_{k} \neq 0$

$$
p \text {-series: } \quad \sum \frac{1}{k^{p}}, \quad \text { if } p \leq 1
$$

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that,

Examples

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that,

$$
\text { if } a_{k} \nrightarrow 0 \text {, then the series } \sum a_{k} \text { diverges; }
$$

therefore there is no reason to apply any special convergence test

Examples

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that,
if $a_{k} \nrightarrow 0$, then the series $\sum a_{k}$ diverges;
therefore there is no reason to apply any special convergence test.

Examples

\square

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that, if $a_{k} \nrightarrow 0$, then the series $\sum a_{k}$ diverges; therefore there is no reason to apply any special convergence test.

Examples

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that, if $a_{k} \nrightarrow 0$, then the series $\sum a_{k}$ diverges; therefore there is no reason to apply any special convergence test.

Examples

$\sum x^{k}$ with $|x| \geq 1$ (e.g, $\left.\sum(-1)^{k}\right)$ diverge since $x^{k} \nrightarrow 0$.

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that, if $a_{k} \nrightarrow 0$, then the series $\sum a_{k}$ diverges; therefore there is no reason to apply any special convergence test.

Examples

$\sum x^{k}$ with $|x| \geq 1\left(\right.$ e.g, $\left.\sum(-1)^{k}\right)$ diverge since $x^{k} \nrightarrow 0$.
$\sum \frac{k}{k+1}$ diverges since $\frac{k}{k+1} \rightarrow 1 \neq 0$.

Convergence Tests (1)

Basic Test for Convergence

Keep in Mind that,

$$
\text { if } a_{k} \nrightarrow 0 \text {, then the series } \sum a_{k} \text { diverges; }
$$

therefore there is no reason to apply any special convergence test.

Examples

$$
\sum x^{k} \text { with }|x| \geq 1\left(\text { e.g, } \sum(-1)^{k}\right) \text { diverge since } x^{k} \nrightarrow 0 \text {. }
$$

$$
\sum \frac{k}{k+1} \text { diverges since } \frac{k}{k+1} \rightarrow 1 \neq 0
$$

$\sum\left(1-\frac{1}{k}\right)^{k}$ diverges since $a_{k}=\left(1-\frac{1}{k}\right)^{k} \rightarrow e^{-1} \neq 0$.

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series

Basic Comparison Test

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

$\sum \frac{1}{2 k^{3}+1}$ converges by comparison with $\sum \frac{1}{k^{3}}$

converges by comparison with

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

$$
\begin{aligned}
& \sum \frac{1}{2 k^{3}+1} \text { converges by comparison with } \sum \frac{1}{k^{3}} \\
& \sum \frac{k^{3}}{k^{5}+4 k^{4}+7} \text { converges by comparison with } \sum \frac{1}{k^{2}}
\end{aligned}
$$

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

$\sum \frac{1}{2 k^{3}+1}$ converges by comparison with $\sum \frac{1}{k^{3}}$
$\sum \frac{k^{3}}{k^{5}+4 k^{4}+7}$ converges by comparison with $\sum \frac{1}{k^{2}}$
$\sum \frac{1}{k^{3}-k^{2}}$ converges by comparison with $\sum \frac{2}{k^{3}}$
diverges by comparison with

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

$\sum \frac{1}{2 k^{3}+1}$ converges by comparison with $\sum \frac{1}{k^{3}}$
$\sum \frac{k^{3}}{k^{5}+4 k^{4}+7}$ converges by comparison with $\sum \frac{1}{k^{2}}$
$\sum \frac{1}{k^{3}-k^{2}}$ converges by comparison with $\sum \frac{2}{k^{3}}$
$\sum \frac{1}{3 k+1}$ diverges by comparison with $\sum \frac{1}{3(k+1)}$

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Basic Comparison Test

$\sum \frac{1}{2 k^{3}+1}$ converges by comparison with $\sum \frac{1}{k^{3}}$
$\sum \frac{k^{3}}{k^{5}+4 k^{4}+7}$ converges by comparison with $\sum \frac{1}{k^{2}}$
$\sum \frac{1}{k^{3}-k^{2}}$ converges by comparison with $\sum \frac{2}{k^{3}}$
$\sum \frac{1}{3 k+1}$ diverges by comparison with $\sum \frac{1}{3(k+1)}$
$\sum \frac{1}{\ln (k+6)}$ diverges by comparison with $\sum \frac{1}{k+6}$

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Limit Comparison Test

\square

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Limit Comparison Test

$\sum \frac{1}{k^{3}-1}$ converges by comparison with $\sum \frac{1}{k^{3}}$.

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Limit Comparison Test

$\sum \frac{1}{k^{3}-1}$ converges by comparison with $\sum \frac{1}{k^{3}}$.
$\sum \frac{3 k^{2}+2 k+1}{k^{3}+1}$ diverges by comparison with $\sum \frac{3}{k}$

Convergence Tests (2)

Comparison Tests

Rational terms are most easily handled by basic comparison or limit comparison with p-series $\sum 1 / k^{p}$

Limit Comparison Test

$\sum \frac{1}{k^{3}-1}$ converges by comparison with $\sum \frac{1}{k^{3}}$.
$\sum \frac{3 k^{2}+2 k+1}{k^{3}+1}$ diverges by comparison with $\sum \frac{3}{k}$
$\sum \frac{5 \sqrt{k}+100}{2 k^{2} \sqrt{k}-9 \sqrt{k}}$ converges by comparison with $\sum \frac{5}{2 k^{2}}$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved

Root Test

Convergence Tests (3)

Root Test and Ratio Test
 The root test is used only if powers are involved.

Root Test

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$\sum \frac{k^{2}}{2^{k}}$

$$
\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1
$$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$\sum \frac{k^{2}}{2^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: }\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1 \\
& \sum \frac{1}{(\ln k)^{k}} \text { converges: }\left(a_{k}\right)^{1 / k}=\frac{1}{\ln k} \rightarrow 0
\end{aligned}
$$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$\sum \frac{k^{2}}{2^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1$
$\sum \frac{1}{(\ln k)^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{\ln k} \rightarrow 0$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$\sum \frac{k^{2}}{2^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1$
$\sum \frac{1}{(\ln k)^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{\ln k} \rightarrow 0$
$\sum\left(1-\frac{1}{k}\right)^{k^{2}}$ converges: $\left(a_{k}\right)^{1 / k}=\left(1+\frac{(-1)}{k}\right)^{k} \rightarrow e^{-1}$

Convergence Tests (3)

Root Test and Ratio Test

The root test is used only if powers are involved.

Root Test

$\sum \frac{k^{2}}{2^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{2} \cdot\left[k^{1 / k}\right]^{2} \rightarrow \frac{1}{2} \cdot 1$
$\sum \frac{1}{(\ln k)^{k}}$ converges: $\left(a_{k}\right)^{1 / k}=\frac{1}{\ln k} \rightarrow 0$
$\sum\left(1-\frac{1}{k}\right)^{k^{2}}$ converges: $\left(a_{k}\right)^{1 / k}=\left(1+\frac{(-1)}{k}\right)^{k} \rightarrow e^{-1}$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test
$\sum \frac{k^{2}}{2^{k}}$

$$
\frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test
$\sum \frac{k^{2}}{2^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2}$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test
$\sum \frac{k^{2}}{2^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2}$
$\sum \frac{1}{k!}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0$
$\sum \frac{k}{10^{k}}$ converges: $\frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10}$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e \\
& \sum \frac{2^{k}}{3^{k}-2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 / 3)^{k}} \rightarrow 2 \cdot \frac{1}{3}
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e \\
& \sum \frac{2^{k}}{3^{k}-2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 / 3)^{k}} \rightarrow 2 \cdot \frac{1}{3}
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e \\
& \sum \frac{2^{k}}{3^{k}-2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 /)^{k}} \rightarrow 2 \cdot \frac{1}{3} \\
& \sum \frac{1}{\sqrt{k!}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\sqrt{\frac{1}{k+1}} \rightarrow 0
\end{aligned}
$$

Convergence Tests (4)

Root Test and Ratio Test

The ratio test is effective with factorials and with combinations of powers and factorials.

Ratio Comparison Test

$$
\begin{aligned}
& \sum \frac{k^{2}}{2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{2} \cdot \frac{(k+1)^{2}}{k^{2}} \rightarrow \frac{1}{2} \\
& \sum \frac{1}{k!} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{k+1} \rightarrow 0 \\
& \sum \frac{k}{10^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\frac{1}{10} \cdot \frac{k+1}{k} \rightarrow \frac{1}{10} \\
& \sum \frac{k^{k}}{k!} \text { diverges: } \frac{a_{k+1}}{a_{k}}=\left(1+\frac{1}{k}\right)^{k} \rightarrow e \\
& \sum \frac{2^{k}}{3^{k}-2^{k}} \text { converges: } \frac{a_{k+1}}{a_{k}}=2 \cdot \frac{1-(2 / 3)^{k}}{3-2(2 / 3)^{k}} \rightarrow 2 \cdot \frac{1}{3} \\
& \sum \frac{1}{\sqrt{k!}} \text { converges: } \frac{a_{k+1}}{a_{k}}=\sqrt{\frac{1}{k+1}} \rightarrow 0
\end{aligned}
$$

Absolute Convergence

Absolute Convergence

\square

Alternating p-Series with $p>1$

Geometric Series with $-1<x<1$

Absolute Convergence

Absolute Convergence
A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.

Alternating p-Series with $p>1$

Geometric Series with $-1<x<1$

Absolute Convergence

Absolute Convergence
A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.

$$
\text { if } \sum\left|a_{k}\right| \text { converges, then } \sum a_{k} \text { converges. }
$$

Alternating p-Series with $p>1$

\sum

Geometric Series with $-1<x<1$

Absolute Convergence

Absolute Convergence

A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.
if $\sum\left|a_{k}\right|$ converges, then $\sum a_{k}$ converges.
i.e., absolutely convergent series are convergent.

Alternating p-Series with $p>1$

Geometric Series with $-1<x<1$

converges

Absolute Convergence

Absolute Convergence

A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.
if $\sum\left|a_{k}\right|$ converges, then $\sum a_{k}$ converges.
i.e., absolutely convergent series are convergent.

Alternating p-Series with $p>1$

Geometric Series with $-1<x<1$
$\sum(-1)^{j(k)} x^{k},-1<x<1$, converge absolutely because $\sum|x|^{k}$ converges.

Absolute Convergence

Absolute Convergence

A series $\sum a_{k}$ is said to converge absolutely if $\sum\left|a_{k}\right|$ converges.
if $\sum\left|a_{k}\right|$ converges, then $\sum a_{k}$ converges.
i.e., absolutely convergent series are convergent.

Alternating p-Series with $p>1$

$$
\begin{aligned}
& \sum \frac{(-1)^{k}}{k^{p}}, p>1, \text { converge absolutely because } \sum \frac{1}{k^{p}} \text { converges. } \\
& \Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^{2}}=1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}-\cdots \text { converge absolutely. }
\end{aligned}
$$

Geometric Series with $-1<x<1$
$\sum(-1)^{j(k)} x^{k},-1<x<1$, converge absolutely because $\sum|x|^{k}$ converges.
$\Rightarrow \quad 1-\frac{1}{2}-\frac{1}{2^{2}}+\frac{1}{2^{3}}-\frac{1}{2^{4}}+\frac{1}{2^{5}}+\frac{1}{2^{6}}-\cdots$ converge absolutely.

Conditional Convergence

Conditional Convergence

A series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges while $\sum\left|a_{k}\right|$ diverges.

Alternating p-Series with $0<p \leq 1$

\qquad

Conditional Convergence

Conditional Convergence

A series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges while $\sum\left|a_{k}\right|$ diverges.

Alternating p-Series with $0<p \leq 1$

Conditional Convergence

Conditional Convergence

A series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges while $\sum\left|a_{k}\right|$ diverges.

Alternating p-Series with $0<p \leq 1$
$\sum \frac{(-1)^{k}}{k^{p}}, 0<p \leq 1$, converge conditionally because $\sum \frac{1}{k^{p}}$ diverges.

Conditional Convergence

Conditional Convergence

A series $\sum a_{k}$ is said to converge conditionally if $\sum a_{k}$ converges while $\sum\left|a_{k}\right|$ diverges.

Alternating p-Series with $0<p \leq 1$
$\sum \frac{(-1)^{k}}{k^{p}}, 0<p \leq 1$, converge conditionally because $\sum \frac{1}{k^{p}}$ diverges.
$\Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots$ converge conditionally.

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

Alternating Series Test

Alternating p-Series with $p>0$

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

is called an alternating series.
Alternating Series Test
Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers

Alternating p-Series with $p>0$

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

Alternating p-Series with $p>0$

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

Alternating p-Series with $p>0$
>0, converge since

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

$$
\text { If } a_{k} \rightarrow 0, \quad \text { then } \sum(-1)^{k} a_{k} \text { converges. }
$$

Alternating p-Series with $p>0$

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

$$
\text { If } a_{k} \rightarrow 0, \quad \text { then } \sum(-1)^{k} a_{k} \text { converges. }
$$

Alternating p-Series with $p>0$
$\sum \frac{(-1)^{k}}{k^{p}}, p>0$, converge since 0 for $\forall x>0$, and

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

$$
\text { If } a_{k} \rightarrow 0, \quad \text { then } \sum(-1)^{k} a_{k} \text { converges. }
$$

Alternating p-Series with $p>0$

$$
\begin{aligned}
& \sum \frac{(-1)^{k}}{k^{p}}, p>0, \text { converge since } f(x)=\frac{1}{x^{p}} \text { is decreasing, i.e., } \\
& f^{\prime}(x)=-\frac{p}{x^{p+1}}>0 \text { for } \forall x>0 \text {, and } \lim f(x)=0 \\
& \Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots \text { converge conditionally. }
\end{aligned}
$$

Alternating Series

Alternating Series

Let $\left\{a_{k}\right\}$ be a sequence of positive numbers.

$$
\sum(-1)^{k} a_{k}=a_{0}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots
$$

is called an alternating series.

Alternating Series Test

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers.

$$
\text { If } a_{k} \rightarrow 0, \quad \text { then } \sum(-1)^{k} a_{k} \text { converges. }
$$

Alternating p-Series with $p>0$

$$
\begin{aligned}
& \sum \frac{(-1)^{k}}{k^{p}}, p>0, \text { converge since } f(x)=\frac{1}{x^{p}} \text { is decreasing, i.e., } \\
& f^{\prime}(x)=-\frac{p}{x^{p+1}>0 \text { for } \forall x>0, \text { and } \lim _{x \rightarrow \infty} f(x)=0} \\
& \Rightarrow \quad \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\cdots \text { converge conditionally. }
\end{aligned}
$$

Examples

Examples

Examples

$\sum \frac{(-1)^{k}}{2 k+1}$, converge since $f(x)=\frac{1}{2 x+1}$ is decreasing, i.e., $f^{\prime}(x)=-\frac{2}{(2 x+1)^{2}}>0$ for $\forall x>0$,
$\sum \frac{(-1)^{k} k}{k^{2}+10}$, converge since $f(x)=\frac{x}{x^{2}+10}$ is decreasing, i.e.,
$f^{\prime}(x)=-\frac{x^{2}-10}{\left(x^{2}+10\right)^{2}}>0$, for $\forall x>\sqrt{10}$,

Examples

$\sum \frac{(-1)^{k}}{2 k+1}$, converge since $f(x)=\frac{1}{2 x+1}$ is decreasing, i.e., $f^{\prime}(x)=-\frac{2}{(2 x+1)^{2}}>0$ for $\forall x>0$, and $\lim _{x \rightarrow \infty} f(x)=0$.
$\sum \frac{(-1)^{k} k}{k^{2}+10}$, converge since $f(x)=\frac{x}{x^{2}+10}$ is decreasing, i.e.,
$f^{\prime}(x)=-\frac{x^{2}-10}{\left(x^{2}+10\right)^{2}}>0$, for $\forall x>\sqrt{10}$, and $\lim _{x \rightarrow \infty} f(x)=0$.

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers that tends

consecutive partial sums S_{n}, S_{n+1},

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L=\sum_{k=0}^{\infty}(-1)^{k} a_{k}$. Then the sum L lies between
consecutive partial sums s_{n}, s_{n+1},

$$
s_{n}<L<s_{n+1} \text {, if } n \text { is odd; } s_{n+1}<L<s_{n} \text {, if } n \text { is even. }
$$

and thus s_{n} approximates L to within a_{n+1}

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L=\sum_{k=0}^{\infty}(-1)^{k} a_{k}$. Then the sum L lies between consecutive partial sums s_{n}, s_{n+1},

$$
s_{n}<L<s_{n+1}, \text { if } n \text { is odd; } \quad s_{n+1}<L<s_{n} \text {, if } n \text { is even. }
$$

and thus s_{n} approximates L to within a_{n+1}

An Estimate for Alternating Series

An Estimate for Alternating Series

Let $\left\{a_{k}\right\}$ be a decreasing sequence of positive numbers that tends to 0 and let $L=\sum_{k=0}^{\infty}(-1)^{k} a_{k}$. Then the sum L lies between consecutive partial sums s_{n}, s_{n+1},

$$
s_{n}<L<s_{n+1}, \text { if } n \text { is odd; } \quad s_{n+1}<L<s_{n} \text {, if } n \text { is even. }
$$ and thus s_{n} approximates L to within a_{n+1}

$$
\left|L-s_{n}\right|<a_{n+1} .
$$

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}
$k=1$

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want $a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98$.

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98 .
$$

From the estimate
$\left|L-S_{99}\right|<a_{100}=\frac{1}{101} \approx 0.00991$

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98
$$

Then $n=99$ and the 99th partial sum s_{100} is

$$
s_{99}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}-\frac{1}{100} \approx 0.6882 .
$$

From the estimate

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98
$$

Then $n=99$ and the 99th partial sum s_{100} is

$$
s_{99}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}-\frac{1}{100} \approx 0.6882
$$

From the estimate

$$
\left|L-s_{99}\right|<a_{100}=\frac{1}{101} \approx 0.00991
$$

we conclude that
$s_{99} \approx 0.6882$

Example

Find s_{n} to approximate $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3} \cdots$ within 10^{-2}.
Set $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1}$. For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(n+1)+1}<10^{-2} \Rightarrow n+2>10^{2} \Rightarrow n>98
$$

Then $n=99$ and the 99th partial sum s_{100} is

$$
s_{99}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{99}-\frac{1}{100} \approx 0.6882
$$

From the estimate

$$
\left|L-s_{99}\right|<a_{100}=\frac{1}{101} \approx 0.00991
$$

we conclude that

$$
\mathrm{s}_{99} \approx 0.6882<\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\ln 2<0.6981 \approx s_{100}
$$

Example

$$
\text { Find } s_{n} \text { to approximate } \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!}
$$

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want
\square

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(2(n+1)+1)!}<10^{-2} \quad \Rightarrow \quad n \geq 1
$$

Then $n=1$ and the 2 nd partial sum s_{2} is

$$
s_{1}=1-\frac{1}{3!} \approx 0.8333
$$

From the estimate

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(2(n+1)+1)!}<10^{-2} \Rightarrow n \geq 1 .
$$

Then $n=1$ and the 2 nd partial sum s_{2} is

$$
s_{1}=1-\frac{1}{3!} \approx 0.8333
$$

From the estimate

$$
\left|!-s_{1}\right|<a_{2}=\frac{1}{5!} \approx 0.0083
$$

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(2(n+1)+1)!}<10^{-2} \Rightarrow n \geq 1 .
$$

Then $n=1$ and the 2 nd partial sum s_{2} is

$$
s_{1}=1-\frac{1}{3!} \approx 0.8333
$$

From the estimate

$$
\left|L-s_{1}\right|<a_{2}=\frac{1}{5!} \approx 0.0083
$$

we conclude that

Example

Find s_{n} to approximate $\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=1-\frac{1}{3!}+\frac{1}{5!} \cdots$ within 10^{-2}.

For $\left|L-s_{n}\right|<10^{-2}$, we want

$$
a_{n+1}=\frac{1}{(2(n+1)+1)!}<10^{-2} \Rightarrow n \geq 1 .
$$

Then $n=1$ and the 2 nd partial sum s_{2} is

$$
s_{1}=1-\frac{1}{3!} \approx 0.8333
$$

From the estimate

$$
\left|L-s_{1}\right|<a_{2}=\frac{1}{5!} \approx 0.0083 .
$$

we conclude that

$$
s_{1} \approx 0.8333<\sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{(2 k+1)!}=\sin 1<0.8416 \approx s_{2}
$$

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

Theorem
\qquad

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}
$$

Theorem

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots
$$

Theorem

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3} \text { absolutely }
$$

Theorem

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3} \text { absolutely } \\
& \text { Rearrangement } 1+\frac{1}{2^{2}}-\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{6}}-\frac{1}{2^{3}}+\frac{1}{2^{8}}+\frac{1}{2^{10}}-\frac{1}{2^{5}} \cdots
\end{aligned}
$$

Theorem

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3} \text { absolutely } \\
& \text { Rearrangement } 1+\frac{1}{2^{2}}-\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{6}}-\frac{1}{2^{3}}+\frac{1}{2^{8}}+\frac{1}{2^{10}}-\frac{1}{2^{5}} \cdots ?=\frac{2}{3}
\end{aligned}
$$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3} \text { absolutely }
$$

$$
\text { Rearrangement } 1+\frac{1}{2^{2}}-\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{6}}-\frac{1}{2^{3}}+\frac{1}{2^{8}}+\frac{1}{2^{10}}-\frac{1}{2^{5}} \cdots=\frac{2}{3}
$$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series
$\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}=1-\frac{1}{2}+\frac{1}{2^{2}}-\frac{1}{2^{3}}+\frac{1}{2^{4}}-\frac{1}{2^{5}}+\cdots=\frac{2}{3}$ absolutely
Rearrangement $1+\frac{1}{2^{2}}-\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{6}}-\frac{1}{2^{3}}+\frac{1}{2^{8}}+\frac{1}{2^{10}}-\frac{1}{2^{5}} \cdots=\frac{2}{3}$

Theorem

All rearrangements of an absolutely convergent series converge absolutely to the same sum.

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally } \\
& \text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots ?=\ln 2
\end{aligned}
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally } \\
& \text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots ?=\ln 2
\end{aligned}
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
$$

Multiply the original series by $\frac{1}{2}$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally } \\
& \text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
\end{aligned}
$$

Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
$$

Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
$$

Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2} \ln 2
$$

Adding the two series, we get the rearrangement

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2$ conditionally
Rearrangement $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2$
Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2} \ln 2
$$

Adding the two series, we get the rearrangement

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2$ conditionally
Rearrangement $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2$
Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2} \ln 2
$$

Adding the two series, we get the rearrangement

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2$ conditionally
Rearrangement $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2$
Multiply the original series by $\frac{1}{2}$

$$
\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2} \ln 2
$$

Adding the two series, we get the rearrangement

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\cdots=\frac{3}{2} \ln 2
$$

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2$ conditionally
Rearrangement $1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2$
Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please. It can also be arranged to diverge to $+\infty$ or $-\infty$, or even to oscillate between any two bounds we choose.

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
$$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to $+\infty$ or $-\infty$, or even to oscillate between any two bounds we choose.

Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln 2 \text { conditionally }
$$

$$
\text { Rearrangement } 1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots \neq \ln 2
$$

Remark

- A series that is only conditionally convergent can be rearranged to converge to any number we please.
- It can also be arranged to diverge to $+\infty$ or $-\infty$, or even to oscillate between any two bounds we choose.

Outline

- Convergence Tests
- Absolute Convergence
- Absolute Convergence
- Alternating Series
- Rearrangements

