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(=1)¥ . . _
Z , converge since f(x) = is decreasing, i.e.,

2k+1 2x+1
f/(X):—W > 0 for \V/X>0,

1)k
Z l(<2 i-)l/(() converge since f(x) =
>—10
g X2 —10
) =~ 1072

X is decreasi i.e
—_ reasing, i.e.,
X2+ 10 s

> 0, for Vx > /10,
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Z o 70 OIS Sl f(x) =

f'(x) = —

% 1 is decreasing, i.e.,

m>0f0l’\VIX>O andxll_>mxf() 0.

Z converge since f(x) = X s decreasing, i.e.,
k2 + 10 x2 +10

2
-1
f'(x) = —(;2_‘_100)2 > 0, for Vx > /10, and lim f(x) = 0.
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An Estimate for Alternating Series

Jiwen He, University of Houston



Convergence Tests Absolute Convergence Alternating Series H

An Estimate for Alternating Series
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An Estimate for Alternating Series

Let {ax} be a decreasing sequence of positive numbers that tends
o0

to 0 and let L = Z(—l)kak.
k=0
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An Estimate for Alternating Series

Let {ax} be a decreasing sequence of positive numbers that tends
o0

to 0 and let L = Z(—l)kak. Then the sum L lies between
. -k:0
consecutive partial sums sp, Sp11,

Sp < L <spy1, if nisodd; spp1 <L <sp,, if nis even.
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An Estimate for Alternating Series

Let {ax} be a decreasing sequence of positive numbers that tends
o0

to 0 and let L = Z(—l)kak. Then the sum L lies between

k=0
consecutive partial sums sp,, sp11,

Sp < L <spy1, if nisodd; spp1 <L <sp,, if nis even.

and thus s, approximates L to within a1

|L — sp| < apt1- [lll
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Example

1 11
():1_+3... sl 102

Find s, to approximate >

k=1

Jiwen He, University of Houston
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Example

. . 2 (1)1 1 1 L
Find s, to approximate Z = 1-— 5 + 3 within 1072.
k=1

o (CD o (D
SetZT:Z 1 ForlL=si| <1072, we want
k=1

k=0

—~

Jiwen He, University of Houston
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Example
9 k+1
=il 1 1

Find s, to approximate kgl (/2 =1- 5 + 3 within 1072

o k+1 o k

—1 —1

Set E (Z = E (k—i-)l . For |[L — s, < 1072, we want

k=1 k=0

1
a1 = oy <1072 = n42>10%> = n>08.

Jiwen He, University of Houston
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. . 2 (1)1 1 1 L
Find s, to approximate kzzl = 1-— 5 + 3 within 1072.
0 k+1 0 k
-1 -1
Set Z (/2 = Z (k—i-)l . For |[L — s, < 102, we want
k=1 k=0
1
an+1:m<10_2 = n+2>102 = n > 98.
Then n =99 and the 99th partial sum sjgp is
1 1 1 1 1
=1-—-—+-—-—-+4+---+—— — = 0.6882.
%99 23727 T 99 100

Jiwen He, University of Houston
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. . 2 (1)1 1 1 L
Find s, to approximate kzzl = 1-— 5 + 3 within 1072.
0 k+1 0 k
-1 -1
Set Z (/2 = Z (k—i-)l . For |[L — s, < 102, we want
k=1 k=0
1
an+1:m<10_2 = n+2>102 = n > 98.
Then n =99 and the 99th partial sum sjgp is
1 1 1 1 1
=1-—-—+-—-—-+4+---+—— — = 0.6882.
%99 23727 T 99 100

From the estimate

1
|L — sgg| < a100 = 101 ~ 0.00991.

10

Jiwen He, University of Houston
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. . 2 (1)1 1 1 L
Find s, to approximate kzzl = 1-— 5 + 3 within 1072.
0 k+1 0 k
-1 -1
Set Z (/2 = Z (k—i-)l . For |[L — s, < 102, we want
k=1 k=0
1
an+1:m<10_2 = n+2>102 = n > 98.
Then n =99 and the 99th partial sum sjgp is
1 1 1 1 1
=1-—-—+-—-—-+4+---+—— — = 0.6882.
%99 23727 T 99 100

From the estimate

il ~ 0.00991.

L— < =
|L — sg9| < a100 10

we conclude that

s (_1)k+1 [FI
S99 ~ 0.6882 < kz; — = In2 < 0.6981 ~ s100
=
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

10~2.

Jiwen He, University of Houston
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

10~2.

For |L — s,| < 1072, we want

Jiwen He, University of Houston
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

1072,
For |L — s,| < 1072, we want

= - <1072 = >l
1= D+ 1) 1+ 1)! m=

Jiwen He, University of Houston
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

1072,
For |L — s,| < 1072, we want
1
= - <10% = > 1.
1= D+ 1) 1+ 1)! h=
Then n =1 and the 2nd partial sum s; is

1
s1=1-— 31 ~ 0.8333

Jiwen He, University of Houston
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

1072,
For |L — s,| < 1072, we want

1
= - <107?% = > 1.
1= D+ 1) 1+ 1)! m=

Then n =1 and the 2nd partial sum s; is
1
s1=1-— 30 ~ 0.8333
From the estimate

1
L —s1| < a2 = 57 ~ 0.0083,

Jiwen He, University of Houston
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Example
o
. . (—1)k+t 1 1 L
Find s, to approximate Z W =1- 30 + o within
k=0

1072,
For |L — s,| < 1072, we want

1
= - <107?% = > 1.
1= D+ 1) 1+ 1)! m=

Then n =1 and the 2nd partial sum s; is
1
s1=1-— 30 ~ 0.8333
From the estimate

1
IL—s1]| < ap = Al ~ 0.0083.
we conclude that
co (_1)k+1
~ 0.8333 < - —sinl < 0.8416 =~
il ; e %2 B

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

Theorem
v

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

o0 _1 k
Z( 2k)
k=0

4

A

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

(e.9] k

-1 1 1 1 1 1
) ( k) =l-c+5 -+ 4o
k=0

2 2 ' 22 23 " 24 25

4

A

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

00 k

-1 1 1 1 1 1 2
E:( k) :1_,4_7_7_1_*_—-1----:gabsolutely
k=0

2 2B B m B

4

A

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

i(_l)k 1 1+1 1+1 1+ 2 bsolutel
—1— -4 - — -4 — _— — 4... =Z 3bsolute
k=0 2k 2 22 23 24 3 /
- 1 1 1 1 1 1 1 1

earrangement1+?—§+?+2*6—§+2*8+2ﬁ_2*5"‘

Theorem

\ | \

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

00 k

-1 1 1 1 1 1 2
E:( k) :1_,4_7_7_1_*_—-1----:gabsolutely
k=0

2 2B B m B

R 1 1 1 1 1 1 1 1 2L
earrangement1+?—§+?+276—§+278+2ﬁ_275..._ L

wl N

Theorem

\ | \

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

i(_l)k 1 1+1 1+1 1+ 2 bsolutel
—1—-=4+—— —+4+— — — +... == absolute
k=0 2k 2 22 23 24 D5 3 y

R 1 1 1 1 1 1 1 1 i
earrangement1+?—§+?+276—§+278+2ﬁ_275... -

Wl N

Theorem

A |

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (1)

Rearrangement of Absolute Convergence Series

(e.9] k
-1 1 1 1 1 1
SEw_, L,
k=0
1 1 1 1 1 1 1

2t Tt a T
R 1 _
earrangement1+?—§+?+276—§+278+2ﬁ_275... -

2
- = — absolutel
3asouey

Wl N

Theorem
All rearrangements of an absolutely convergent series converge
absolutely to the same sum.

A

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o0
—1)k+1 1 1 1 1 1
Z(lz:12+34+56+---:|n2conditionally

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

oo
—1)k+t 1 1 1 1 1

;(12:12+34+56+"' :|n2conditionally

earrangemen 3 5 5 7 1 9 11 5

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o0
—1)k+1 1 1 1 1 1
21:( /2 :1f§+§fz+gf6+---:In2conditiona|ly
1 1 1 1 1 1 1 1
R tld+-—-4+-—4+=-—-4+ -4+ ———...2=1In2
earrangemen +3 2+5—|—7 4+9+11 6 n

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o
il 11 1 1 1
;1:( /2 _1f5 §fz+gf6+~--:In2conditiona|ly
11 1 1 1 1 1 1
R t1 - = - - = — — ... In2
earrangemen —1—3 2+5+7 4+9+11 F 7 In

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

(o)
—1)k+1 1 1 1 1 1
kgl(z:12+34+56+~--:|n2conditionally
11 1 1 1 1 1 1
R 1+ - — -4 -4 - _ -4 = —Z ... £ In2
earrangement —1—3 2+5+7 4+9+11 5 # In

Multiply the original series by %

o0

1o (1)<
22k

k=1

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

(o)
—1)k+1 1 1 1 1 1
kgl(z:12+34+56+~--:In2conditionally
11 1 1 1 1 1 1
R 1+ - — -4 -4 - _ -4 = —Z ... £ In2
earrangement —1—3 2+5+7 4+9+11 5 # In

Multiply the original series by %

L= (==t 1 1 1 1 i
22 %~z ats stmt

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

1 1 1

(- 1
kgl Y 1-— 5 372 =+ 575 + -+ = In2 conditionally
11 1 1 1 1 1 1
1+-—4+-+-—-4=-+——=--- #1In2
Rearrangement —1—3 2+5+7 4+9+11 5 # In

Multiply the original series by %

L= (==t 1 1 1 1 i 1
il N . 4y _ 4 4...=21n2
2;1 k 2 476 8 10" 2"

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o

—1)k+1 1 1 1 1 1
22(2212 g—z+g—6 = In 2 conditionally

11 1 1 1 1 1

Rearrangement1—|—§—§+g+?—z+§+ﬁ—6#|n2
Multiply the original series by %

L= (==t 1 1 1 1 i 1

- S ST 4T 4. =21]n2

32k 2 476 8 10" 2"

k=1

Adding the two series, we get the rearrangement

( 1 k+1 1 ce (_1)k+1
R "

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

(—1)kt1 1 1 1 1

(o)
1
kglk:12+34+56+~--:|n2conditionally
1 1.1 1 1 1 1
1+ -—c+-+z—+-+—=—=:-- #1In2
Rearrangement —1—3 2+5+7 4+9+11 5 # In

Multiply the original series by %

L= (==t 1 1 1 1 i 1
il N . 4y _ 4 4...=21n2
2;1 k 2 476 8 10" 2"

Adding the two series, we get the rearrangement

o [e.e]
(=t i = (= 1 1.1 11
- =14+ 4T
2. k +2Z k HER R R [ll'l
k=1 k=1

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

(—1)kt1 1 1 1 1

(o)
1
kglk:12+34+56+~--:|n2conditionally
1 1.1 1 1 1 1
1+ -—c+-+z—+-+—=—=:-- #1In2
Rearrangement —1—3 2+5+7 4+9+11 5 # In

Multiply the original series by %

L= (==t 1 1 1 1 i 1
il N . 4y _ 4 4...=21n2
2;1 k 2 476 8 10" 2"

Adding the two series, we get the rearrangement

o [e.e]

(=t i = (= 1 1.1 11 3
S - S e S S0 = = P2
D P T3t 2" B

k=1 k=1

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o
)k 1 1 1 1 1
;1: (/3 —1— > + == J- 5 + -+ = In2 conditionally
11 1 1 1 1 1
R R L I L L ... 41n?
earrangement —1—3 sTst7- 2t 11 6 7 In

Remark
v

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

o
—1)k+1 1 1
}klz( IZ :1_§+§ Z+g 64----:In2conditionally
11 1 1 1 1 1 1
R tl+ - 442 44 = 2.4 n?2
earrangemen —1—3 2+5+7 2 9+11 6 7 In |

@ A series that is only conditionally convergent can be
rearranged to converge to any number we please.

Jiwen He, University of Houston
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Why Absolute Convergence Matters: Rearrangements (2)

Rearrangement of Conditional Convergence Series

(oo}
_1)k+1 1 1 1 1 1
kz:l(lzzl_z+3 Z+E 6+ - = In2 conditionally
1 1 1 1 1 1 1
. i1l b4 b L L g
earrangemen —1—3 2+5+7 4+9+11 6 % In 1

@ A series that is only conditionally convergent can be
rearranged to converge to any number we please.
@ It can also be arranged to diverge to +00 or —oo, or even to
oscillate between any two bounds we choose.
v

Jiwen He, University of Houston
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